Extending Large Vision-Language Model for Diverse Interactive Tasks in Autonomous Driving
- URL: http://arxiv.org/abs/2505.08725v1
- Date: Tue, 13 May 2025 16:36:51 GMT
- Title: Extending Large Vision-Language Model for Diverse Interactive Tasks in Autonomous Driving
- Authors: Zongchuang Zhao, Haoyu Fu, Dingkang Liang, Xin Zhou, Dingyuan Zhang, Hongwei Xie, Bing Wang, Xiang Bai,
- Abstract summary: DriveMonkey is a framework that seamlessly integrates Large Visual-Language Models with a spatial processor.<n>Our experiments show that DriveMonkey outperforms general LVLMs, especially achieving a 9.86% notable improvement on the 3D visual grounding task.
- Score: 45.82124136705798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Large Visual-Language Models (LVLMs) have significantly advanced image understanding. Their comprehension and reasoning capabilities enable promising applications in autonomous driving scenarios. However, existing research typically focuses on front-view perspectives and partial objects within scenes, struggling to achieve comprehensive scene understanding. Meanwhile, existing LVLMs suffer from the lack of mapping relationship between 2D and 3D and insufficient integration of 3D object localization and instruction understanding. To tackle these limitations, we first introduce NuInteract, a large-scale dataset with over 1.5M multi-view image language pairs spanning dense scene captions and diverse interactive tasks. Furthermore, we propose DriveMonkey, a simple yet effective framework that seamlessly integrates LVLMs with a spatial processor using a series of learnable queries. The spatial processor, designed as a plug-and-play component, can be initialized with pre-trained 3D detectors to improve 3D perception. Our experiments show that DriveMonkey outperforms general LVLMs, especially achieving a 9.86% notable improvement on the 3D visual grounding task. The dataset and code will be released at https://github.com/zc-zhao/DriveMonkey.
Related papers
- VLM-3R: Vision-Language Models Augmented with Instruction-Aligned 3D Reconstruction [86.82819259860186]
We introduce VLM-3R, a unified framework for Vision-Language Models (VLMs) that incorporates 3D Reconstructive instruction tuning.<n>VLM-3R processes monocular video frames by employing a geometry encoder to derive implicit 3D tokens that represent spatial understanding.
arXiv Detail & Related papers (2025-05-26T17:56:30Z) - Agentic 3D Scene Generation with Spatially Contextualized VLMs [67.31920821192323]
We introduce a new paradigm that enables vision-language models to generate, understand, and edit complex 3D environments.<n>We develop an agentic 3D scene generation pipeline in which the VLM iteratively reads from and updates the spatial context.<n>Results show that our framework can handle diverse and challenging inputs, achieving a level of generalization not observed in prior work.
arXiv Detail & Related papers (2025-05-26T15:28:17Z) - NVSMask3D: Hard Visual Prompting with Camera Pose Interpolation for 3D Open Vocabulary Instance Segmentation [14.046423852723615]
We introduce a novel 3D Gaussian Splatting based hard visual prompting approach to generate diverse viewpoints around target objects.<n>Our method simulates realistic 3D perspectives, effectively augmenting existing hard visual prompts.<n>This training-free strategy integrates seamlessly with prior hard visual prompts, enriching object-descriptive features.
arXiv Detail & Related papers (2025-04-20T14:39:27Z) - MM-Spatial: Exploring 3D Spatial Understanding in Multimodal LLMs [13.678235444299286]
Multimodal large language models (MLLMs) excel at 2D visual understanding but remain limited in their ability to reason about 3D space.<n>In this work, we leverage large-scale high-quality 3D scene data with open-set annotations to introduce 1) a novel supervised fine-tuning dataset and 2) a new evaluation benchmark, focused on indoor scenes.
arXiv Detail & Related papers (2025-03-17T12:34:22Z) - g3D-LF: Generalizable 3D-Language Feature Fields for Embodied Tasks [62.74304008688472]
Generalizable 3D-Language Feature Fields (g3D-LF) is a 3D representation model pre-trained on large-scale 3D-language dataset for embodied tasks.
arXiv Detail & Related papers (2024-11-26T01:54:52Z) - PAVLM: Advancing Point Cloud based Affordance Understanding Via Vision-Language Model [4.079327215055764]
Affordance understanding, the task of identifying actionable regions on 3D objects, plays a vital role in allowing robotic systems to engage with and operate within the physical world.
Visual Language Models (VLMs) have excelled in high-level reasoning but fall short in grasping the nuanced physical properties required for effective human-robot interaction.
We introduce PAVLM, an innovative framework that utilizes the extensive multimodal knowledge embedded in pre-trained language models to enhance 3D affordance understanding of point cloud.
arXiv Detail & Related papers (2024-10-15T12:53:42Z) - TWIST & SCOUT: Grounding Multimodal LLM-Experts by Forget-Free Tuning [54.033346088090674]
We introduce TWIST & SCOUT, a framework that equips pre-trained MLLMs with visual grounding ability.<n>To fine-tune the model effectively, we generate a high-quality synthetic dataset we call SCOUT.<n>This dataset provides rich supervision signals, describing a step-by-step multimodal reasoning process.
arXiv Detail & Related papers (2024-10-14T13:35:47Z) - Coarse Correspondences Boost Spatial-Temporal Reasoning in Multimodal Language Model [51.83436609094658]
We introduce Coarse Correspondences, a simple lightweight method that enhances MLLMs' spatial-temporal reasoning with 2D images as input.
Our method uses a lightweight tracking model to identify primary object correspondences between frames in a video or across different image viewpoints.
We demonstrate that this simple training-free approach brings substantial gains to GPT4-V/O consistently on four benchmarks.
arXiv Detail & Related papers (2024-08-01T17:57:12Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
This paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan.
The resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks.
arXiv Detail & Related papers (2024-06-13T17:59:30Z) - When LLMs step into the 3D World: A Survey and Meta-Analysis of 3D Tasks via Multi-modal Large Language Models [113.18524940863841]
This survey provides a comprehensive overview of the methodologies enabling large language models to process, understand, and generate 3D data.
Our investigation spans various 3D data representations, from point clouds to Neural Radiance Fields (NeRFs)
It examines their integration with LLMs for tasks such as 3D scene understanding, captioning, question-answering, and dialogue.
arXiv Detail & Related papers (2024-05-16T16:59:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.