VLM-3R: Vision-Language Models Augmented with Instruction-Aligned 3D Reconstruction
- URL: http://arxiv.org/abs/2505.20279v2
- Date: Sun, 01 Jun 2025 21:20:16 GMT
- Title: VLM-3R: Vision-Language Models Augmented with Instruction-Aligned 3D Reconstruction
- Authors: Zhiwen Fan, Jian Zhang, Renjie Li, Junge Zhang, Runjin Chen, Hezhen Hu, Kevin Wang, Huaizhi Qu, Dilin Wang, Zhicheng Yan, Hongyu Xu, Justin Theiss, Tianlong Chen, Jiachen Li, Zhengzhong Tu, Zhangyang Wang, Rakesh Ranjan,
- Abstract summary: We introduce VLM-3R, a unified framework for Vision-Language Models (VLMs) that incorporates 3D Reconstructive instruction tuning.<n>VLM-3R processes monocular video frames by employing a geometry encoder to derive implicit 3D tokens that represent spatial understanding.
- Score: 86.82819259860186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of Large Multimodal Models (LMMs) for 2D images and videos has motivated extending these models to understand 3D scenes, aiming for human-like visual-spatial intelligence. Nevertheless, achieving deep spatial understanding comparable to human capabilities poses significant challenges in model encoding and data acquisition. Existing methods frequently depend on external depth sensors for geometry capture or utilize off-the-shelf algorithms for pre-constructing 3D maps, thereby limiting their scalability, especially with prevalent monocular video inputs and for time-sensitive applications. In this work, we introduce VLM-3R, a unified framework for Vision-Language Models (VLMs) that incorporates 3D Reconstructive instruction tuning. VLM-3R processes monocular video frames by employing a geometry encoder to derive implicit 3D tokens that represent spatial understanding. Leveraging our Spatial-Visual-View Fusion and over 200K curated 3D reconstructive instruction tuning question-answer (QA) pairs, VLM-3R effectively aligns real-world spatial context with language instructions. This enables monocular 3D spatial assistance and embodied reasoning. To facilitate the evaluation of temporal reasoning, we introduce the Vision-Spatial-Temporal Intelligence benchmark, featuring over 138.6K QA pairs across five distinct tasks focused on evolving spatial relationships. Extensive experiments demonstrate that our model, VLM-3R, not only facilitates robust visual-spatial reasoning but also enables the understanding of temporal 3D context changes, excelling in both accuracy and scalability.
Related papers
- Evo-0: Vision-Language-Action Model with Implicit Spatial Understanding [8.090058633054852]
We introduce a plug-and-play module that implicitly injects 3D geometry features into Vision-Language-Action (VLA) models.<n>Our method significantly improves the performance of state-of-the-art VLA models across diverse scenarios.
arXiv Detail & Related papers (2025-07-01T04:05:47Z) - 3D-Aware Vision-Language Models Fine-Tuning with Geometric Distillation [17.294440057314812]
Vision-Language Models (VLMs) have shown remarkable performance on diverse visual and linguistic tasks.<n>We propose Geometric Distillation, a framework that injects human-inspired geometric cues into pretrained VLMs.<n>Our method shapes representations to be geometry-aware while remaining compatible with natural image-text inputs.
arXiv Detail & Related papers (2025-06-11T15:56:59Z) - Spatial Understanding from Videos: Structured Prompts Meet Simulation Data [79.52833996220059]
We present a unified framework for enhancing 3D spatial reasoning in pre-trained vision-language models without modifying their architecture.<n>This framework combines SpatialMind, a structured prompting strategy that decomposes complex scenes and questions into interpretable reasoning steps, with ScanForgeQA, a scalable question-answering dataset built from diverse 3D simulation scenes.
arXiv Detail & Related papers (2025-06-04T07:36:33Z) - Spatial-MLLM: Boosting MLLM Capabilities in Visual-based Spatial Intelligence [13.168559963356952]
We present Spatial-MLLM, a novel framework for visual-based spatial reasoning from purely 2D observations.<n>Our key insight is to unleash the strong structure prior to the feed-forward visual geometry foundation model.<n>A connector then integrates both features into unified visual tokens for enhanced spatial understanding.
arXiv Detail & Related papers (2025-05-29T17:59:04Z) - Agentic 3D Scene Generation with Spatially Contextualized VLMs [67.31920821192323]
We introduce a new paradigm that enables vision-language models to generate, understand, and edit complex 3D environments.<n>We develop an agentic 3D scene generation pipeline in which the VLM iteratively reads from and updates the spatial context.<n>Results show that our framework can handle diverse and challenging inputs, achieving a level of generalization not observed in prior work.
arXiv Detail & Related papers (2025-05-26T15:28:17Z) - Video-3D LLM: Learning Position-Aware Video Representation for 3D Scene Understanding [19.382210260928776]
Video-3D LLM treats 3D scenes as dynamic videos and incorporates 3D position encoding into these representations.<n>Our model achieves state-of-the-art performance on several 3D scene understanding benchmarks.
arXiv Detail & Related papers (2024-11-30T14:28:53Z) - LLMI3D: MLLM-based 3D Perception from a Single 2D Image [77.13869413871028]
multimodal large language models (MLLMs) excel in general capacity but underperform in 3D tasks.<n>In this paper, we propose solutions for weak 3D local spatial object perception, poor text-based geometric numerical output, and inability to handle camera focal variations.<n>We employ parameter-efficient fine-tuning for a pre-trained MLLM and develop LLMI3D, a powerful 3D perception MLLM.
arXiv Detail & Related papers (2024-08-14T10:00:16Z) - Coarse Correspondences Boost Spatial-Temporal Reasoning in Multimodal Language Model [51.83436609094658]
We introduce Coarse Correspondences, a simple lightweight method that enhances MLLMs' spatial-temporal reasoning with 2D images as input.
Our method uses a lightweight tracking model to identify primary object correspondences between frames in a video or across different image viewpoints.
We demonstrate that this simple training-free approach brings substantial gains to GPT4-V/O consistently on four benchmarks.
arXiv Detail & Related papers (2024-08-01T17:57:12Z) - Volumetric Environment Representation for Vision-Language Navigation [66.04379819772764]
Vision-language navigation (VLN) requires an agent to navigate through a 3D environment based on visual observations and natural language instructions.
We introduce a Volumetric Environment Representation (VER), which voxelizes the physical world into structured 3D cells.
VER predicts 3D occupancy, 3D room layout, and 3D bounding boxes jointly.
arXiv Detail & Related papers (2024-03-21T06:14:46Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
We present a novel approach to the generation of static and articulated 3D assets that has a 3D autodecoder at its core.
The 3D autodecoder framework embeds properties learned from the target dataset in the latent space.
We then identify the appropriate intermediate volumetric latent space, and introduce robust normalization and de-normalization operations.
arXiv Detail & Related papers (2023-07-07T17:59:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.