A Review and Implementation of Object Detection Models and Optimizations for Real-time Medical Mask Detection during the COVID-19 Pandemic
- URL: http://arxiv.org/abs/2405.18387v1
- Date: Tue, 28 May 2024 17:27:24 GMT
- Title: A Review and Implementation of Object Detection Models and Optimizations for Real-time Medical Mask Detection during the COVID-19 Pandemic
- Authors: Ioanna Gogou, Dimitrios Koutsomitropoulos,
- Abstract summary: This work assesses the most fundamental object detection models on the Common Objects in Context (COCO) dataset.
We select a highly efficient model called YOLOv5 to train on the topical and unexplored dataset of human faces with medical masks.
We propose an optimized model based on YOLOv5 using transfer learning for the detection of correctly and incorrectly worn medical masks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional Neural Networks (CNN) are commonly used for the problem of object detection thanks to their increased accuracy. Nevertheless, the performance of CNN-based detection models is ambiguous when detection speed is considered. To the best of our knowledge, there has not been sufficient evaluation of the available methods in terms of the speed/accuracy trade-off in related literature. This work assesses the most fundamental object detection models on the Common Objects in Context (COCO) dataset with respect to this trade-off, their memory consumption, and computational and storage cost. Next, we select a highly efficient model called YOLOv5 to train on the topical and unexplored dataset of human faces with medical masks, the Properly-Wearing Masked Faces Dataset (PWMFD), and analyze the benefits of specific optimization techniques for real-time medical mask detection: transfer learning, data augmentations, and a Squeeze-and-Excitation attention mechanism. Using our findings in the context of the COVID-19 pandemic, we propose an optimized model based on YOLOv5s using transfer learning for the detection of correctly and incorrectly worn medical masks that surpassed more than two times in speed (69 frames per second) the state-of-the-art model SE-YOLOv3 on the PWMFD dataset while maintaining the same level of mean Average Precision (67%).
Related papers
- Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices [0.0]
Gradient Boosting Models (GBMs) outperformed sequential models in terms of training speed, interpretability, and reliability.
A 5-minute prediction window was chosen for timely intervention, with minute-levels standardizing the data.
This study highlights ML's potential to improve triage and reduce alarm fatigue.
arXiv Detail & Related papers (2024-10-30T23:24:28Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Mask wearing object detection algorithm based on improved YOLOv5 [6.129833920546161]
This paper proposes a mask-wearing face detection model based on YOLOv5l.
Our proposed method significantly enhances the detection capability of mask-wearing.
arXiv Detail & Related papers (2023-10-16T10:06:42Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
Camouflaged Object Detection (COD) is a challenging task in computer vision due to the high similarity between camouflaged objects and their surroundings.
We propose a new paradigm that treats COD as a conditional mask-generation task leveraging diffusion models.
Our method, dubbed CamoDiffusion, employs the denoising process of diffusion models to iteratively reduce the noise of the mask.
arXiv Detail & Related papers (2023-05-29T07:49:44Z) - Wearing face mask detection using deep learning through COVID-19
pandemic [0.0]
In this paper, we do an investigation on the capability of three state-of-the-art object detection neural networks on face mask detection for real-time applications.
According to the performance of different models, the best model that can be suitable for use in real-world and mobile device applications was the YOLOv4-tiny model.
arXiv Detail & Related papers (2023-04-28T19:39:32Z) - PACMAN: a framework for pulse oximeter digit detection and reading in a
low-resource setting [0.42897826548373363]
In light of the COVID-19 pandemic, patients were required to manually input their daily oxygen saturation (SpO2) and pulse rate (PR) values into a health monitoring system.
Several studies attempted to detect the physiological value from the captured image using optical character recognition (OCR)
This study aimed to propose a novel framework called PACMAN with a low-resource deep learning-based computer vision.
arXiv Detail & Related papers (2022-12-09T16:22:28Z) - An Improved Lightweight YOLOv5 Model Based on Attention Mechanism for
Face Mask Detection [3.3398969693904723]
We propose an improved lightweight face mask detector based on YOLOv5.
It achieves a mean average precision of 95.2%, which is 4.4% higher than the baseline and is also more accurate compared with other existing models.
arXiv Detail & Related papers (2022-03-30T17:41:21Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.