Asymmetrical estimator for training encapsulated deep photonic neural networks
- URL: http://arxiv.org/abs/2405.18458v4
- Date: Thu, 13 Feb 2025 11:59:20 GMT
- Title: Asymmetrical estimator for training encapsulated deep photonic neural networks
- Authors: Yizhi Wang, Minjia Chen, Chunhui Yao, Jie Ma, Ting Yan, Richard Penty, Qixiang Cheng,
- Abstract summary: Photonic neural networks (PNNs) are fast in-propagation and high bandwidth paradigms.
We introduce the asymmetrical training (AsyT) method, tailored for encapsulated DPNNs.
AsyT offers a lightweight solution for DPNNs with minimum readouts, fast and energy-efficient operation, and minimum system footprint.
- Score: 10.709758849326061
- License:
- Abstract: Photonic neural networks (PNNs) are fast in-propagation and high bandwidth paradigms that aim to popularize reproducible NN acceleration with higher efficiency and lower cost. However, the training of PNN is known to be challenging, where the device-to-device and system-to-system variations create imperfect knowledge of the PNN. Despite backpropagation (BP)-based training algorithms being the industry standard for their robustness, generality, and fast gradient convergence for digital training, existing PNN-BP methods rely heavily on accurate intermediate state extraction or extensive computational resources for deep PNNs (DPNNs). The truncated photonic signal propagation and the computation overhead bottleneck DPNN's operation efficiency and increase system construction cost. Here, we introduce the asymmetrical training (AsyT) method, tailored for encapsulated DPNNs, where the signal is preserved in the analogue photonic domain for the entire structure. AsyT offers a lightweight solution for DPNNs with minimum readouts, fast and energy-efficient operation, and minimum system footprint. AsyT's ease of operation, error tolerance, and generality aim to promote PNN acceleration in a widened operational scenario despite the fabrication variations and imperfect controls. We demonstrated AsyT for encapsulated DPNN with integrated photonic chips, repeatably enhancing the performance from in-silico BP for different network structures and datasets.
Related papers
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Hardware-Aware DNN Compression via Diverse Pruning and Mixed-Precision
Quantization [1.0235078178220354]
We propose an automated framework to compress Deep Neural Networks (DNNs) in a hardware-aware manner by jointly employing pruning and quantization.
Our framework achieves $39%$ average energy reduction for datasets $1.7%$ average accuracy loss and outperforms significantly the state-of-the-art approaches.
arXiv Detail & Related papers (2023-12-23T18:50:13Z) - Dual adaptive training of photonic neural networks [30.86507809437016]
Photonic neural network (PNN) computes with photons instead of electrons to feature low latency, high energy efficiency, and high parallelism.
Existing training approaches cannot address the extensive accumulation of systematic errors in large-scale PNNs.
We propose dual adaptive training ( DAT) that allows the PNN model to adapt to substantial systematic errors.
arXiv Detail & Related papers (2022-12-09T05:03:45Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models.
Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency.
We propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning.
arXiv Detail & Related papers (2022-10-09T07:47:56Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - DNN Training Acceleration via Exploring GPGPU Friendly Sparsity [16.406482603838157]
We propose the Approximate Random Dropout that replaces the conventional random dropout of neurons and synapses with a regular and online generated row-based or tile-based dropout patterns.
We then develop a SGD-based Search Algorithm that produces the distribution of row-based or tile-based dropout patterns to compensate for the potential accuracy loss.
We also propose the sensitivity-aware dropout method to dynamically drop the input feature maps based on their sensitivity so as to achieve greater forward and backward training acceleration.
arXiv Detail & Related papers (2022-03-11T01:32:03Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - TaxoNN: A Light-Weight Accelerator for Deep Neural Network Training [2.5025363034899732]
We present a novel approach to add the training ability to a baseline DNN accelerator (inference only) by splitting the SGD algorithm into simple computational elements.
Based on this approach we propose TaxoNN, a light-weight accelerator for DNN training.
Our experimental results show that TaxoNN delivers, on average, 0.97% higher misclassification rate compared to a full-precision implementation.
arXiv Detail & Related papers (2020-10-11T09:04:19Z) - FSpiNN: An Optimization Framework for Memory- and Energy-Efficient
Spiking Neural Networks [14.916996986290902]
Spiking Neural Networks (SNNs) offer unsupervised learning capability due to the spike-timing-dependent plasticity (STDP) rule.
However, state-of-the-art SNNs require a large memory footprint to achieve high accuracy.
We propose FSpiNN, an optimization framework for obtaining memory- and energy-efficient SNNs for training and inference processing.
arXiv Detail & Related papers (2020-07-17T09:40:26Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.