論文の概要: Scalable Surrogate Verification of Image-based Neural Network Control Systems using Composition and Unrolling
- arxiv url: http://arxiv.org/abs/2405.18554v1
- Date: Tue, 28 May 2024 19:56:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 21:53:22.896793
- Title: Scalable Surrogate Verification of Image-based Neural Network Control Systems using Composition and Unrolling
- Title(参考訳): 合成とアンローリングを用いた画像ベースニューラルネットワーク制御系のスケーラブルなサロゲート検証
- Authors: Feiyang Cai, Chuchu Fan, Stanley Bak,
- Abstract要約: 本研究では,実世界に代わって条件付き生成逆数ネットワーク(cGAN)をイメージジェネレータとして訓練し,サロゲート検証手法を提案する。
我々は、cGANとニューラルネットワークコントローラとともにシステムのダイナミクスを構成することで、一段階のエラーを克服する。
単一ステップの合成を繰り返し、制御ループの複数のステップを大規模ニューラルネットワークに展開することで、マルチステップエラーを低減する。
- 参考スコア(独自算出の注目度): 9.633494094538017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Verifying safety of neural network control systems that use images as input is a difficult problem because, from a given system state, there is no known way to mathematically model what images are possible in the real-world. We build on recent work that considers a surrogate verification approach, training a conditional generative adversarial network (cGAN) as an image generator in place of the real world. This enables set-based formal analysis of the closed-loop system, providing analysis beyond simulation and testing. While existing work is effective on small examples, excessive overapproximation both within a single control period and across multiple control periods limits its scalability. We propose approaches to overcome these two sources of error. First, we overcome one-step error by composing the system's dynamics along with the cGAN and neural network controller, without losing the dependencies between input states and the control outputs as in the monotonic analysis of the system dynamics. Second, we reduce multi-step error by repeating the single-step composition, essentially unrolling multiple steps of the control loop into a large neural network. We then leverage existing network verification tools to compute accurate reachable sets for multiple steps, avoiding the accumulation of abstraction error at each step. We demonstrate the effectiveness of our approach in terms of both accuracy and scalability using two case studies: an autonomous aircraft taxiing system and an advanced emergency braking system. On the aircraft taxiing system, the converged reachable set is 175% larger using the prior baseline method compared with our proposed approach. On the emergency braking system, with 24x the number of image output variables from the cGAN, the baseline method fails to prove any states are safe, whereas our improvements enable set-based safety analysis.
- Abstract(参考訳): 入力としてイメージを使用するニューラルネットワーク制御システムの安全性を検証することは難しい問題である。
本研究では,実世界に代わって条件付き生成逆数ネットワーク(cGAN)をイメージジェネレータとして訓練し,サロゲート検証アプローチを考慮した最近の研究に基づいて構築する。
これにより、クローズドループシステムの集合ベースの形式解析が可能となり、シミュレーションやテスト以外の分析が可能になる。
既存の作業は小さな例では有効であるが、過剰なオーバー近似は単一の制御期間と複数の制御期間の両方でそのスケーラビリティを制限している。
この2つの誤りの原因を克服する手法を提案する。
まず,システムダイナミクスの単調解析のように入力状態と制御出力の依存関係を失うことなく,cGANやニューラルネットワークコントローラとともにシステムのダイナミクスを構成することで,一段階誤差を克服する。
第2に、制御ループの複数のステップを大規模ニューラルネットワークにアンロールする単一ステップ構成を繰り返すことで、マルチステップエラーを低減する。
次に、既存のネットワーク検証ツールを活用して、複数のステップの正確な到達可能な集合を計算し、各ステップにおける抽象化エラーの蓄積を避ける。
本稿では,自律型航空機タクシーシステムと高度緊急制動システムという2つのケーススタディを用いて,精度とスケーラビリティの両面からアプローチの有効性を実証する。
航空機のタクシーシステムでは, 従来のベースライン方式に比べて, 収束到達可能セットが175%大きい。
緊急制動システムでは, cGANからの画像出力変数の24倍の回数で, ベースライン法はどの状態も安全であることを示すのに失敗する。
関連論文リスト
- Verification of Neural Network Control Systems in Continuous Time [1.5695847325697108]
本研究では,連続的なニューラルネットワーク制御系に対する最初の検証手法を開発した。
ニューラルネットワークコントローラをモデル化するための抽象化レベルを追加することで、これを実現する。
視覚に基づく自律型飛行機タクシーシステムに適用することで,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-05-31T19:39:48Z) - Transfer learning-based physics-informed convolutional neural network
for simulating flow in porous media with time-varying controls [0.0]
多孔質媒質中の二相流をシミュレートする物理インフォームド畳み込みニューラルネットワークを提案する。
有限体積スキームは流れの方程式を識別するために用いられる。
N ノイマン境界条件は半離散方程式にシームレスに組み込まれる。
論文 参考訳(メタデータ) (2023-10-10T05:29:33Z) - Interval Reachability of Nonlinear Dynamical Systems with Neural Network
Controllers [5.543220407902113]
本稿では、ニューラルネットワークコントローラを用いた非線形連続時間力学系の厳密な検証のための区間解析に基づく計算効率の良いフレームワークを提案する。
混合単調理論に着想を得て,ニューラルネットワークの包摂関数と開ループシステムの分解関数を用いて,閉ループ力学をより大きなシステムに組み込む。
埋め込みシステムの単一軌跡を用いて、到達可能な集合の超矩形超近似を効率的に計算できることが示される。
論文 参考訳(メタデータ) (2023-01-19T06:46:36Z) - Finite-time System Identification and Adaptive Control in Autoregressive
Exogenous Systems [79.67879934935661]
未知のARXシステムのシステム識別と適応制御の問題について検討する。
我々は,オープンループとクローズループの両方のデータ収集の下で,ARXシステムに対する有限時間学習保証を提供する。
論文 参考訳(メタデータ) (2021-08-26T18:00:00Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - Control of Stochastic Quantum Dynamics with Differentiable Programming [0.0]
微分可能プログラミングに基づく制御スキームの自動設計のためのフレームワークを提案する。
このアプローチを、ホモジエン検出を受けるクビットの状態準備と安定化に適用する。
その結果、信号と雑音の比が低いにもかかわらず、平均忠実度が約85%の目標状態へのキュービットの準備と安定化をコントローラに教えることができる。
論文 参考訳(メタデータ) (2021-01-04T19:00:03Z) - Optimizing Mixed Autonomy Traffic Flow With Decentralized Autonomous
Vehicles and Multi-Agent RL [63.52264764099532]
本研究では、完全分散制御方式を用いて、混合自律環境でのボトルネックのスループットを向上させる自動運転車の能力について検討する。
この問題にマルチエージェント強化アルゴリズムを適用し、5%の浸透速度で20%から40%の浸透速度で33%までのボトルネックスループットの大幅な改善が達成できることを実証した。
論文 参考訳(メタデータ) (2020-10-30T22:06:05Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Reach-SDP: Reachability Analysis of Closed-Loop Systems with Neural
Network Controllers via Semidefinite Programming [19.51345816555571]
本稿では,ニューラルネットワークを用いた線形時間変化システムの安全性検証のための新しいフォワードリーチビリティ解析手法を提案する。
半有限計画法を用いて、これらの近似到達可能な集合を計算できることが示される。
提案手法は,まずディープニューラルネットワークを用いて非線形モデル予測制御器を近似し,その解析ツールを用いて閉ループシステムの有限時間到達性と制約満足度を証明した。
論文 参考訳(メタデータ) (2020-04-16T18:48:25Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
部分的に観測可能な線形力学系におけるシステム同定と適応制御の問題について検討する。
開ループ系と閉ループ系の両方において有限時間保証付きの最初のモデル推定法を提案する。
AdaptOnは、未知の部分観測可能な線形力学系の適応制御において、$textpolylogleft(Tright)$ regretを達成する最初のアルゴリズムであることを示す。
論文 参考訳(メタデータ) (2020-03-25T06:00:33Z) - Firearm Detection and Segmentation Using an Ensemble of Semantic Neural
Networks [62.997667081978825]
本稿では,意味的畳み込みニューラルネットワークのアンサンブルに基づく兵器検出システムを提案する。
特定のタスクに特化した単純なニューラルネットワークのセットは、計算リソースを少なくし、並列にトレーニングすることができる。
個々のネットワークの出力の集約によって与えられるシステムの全体的な出力は、ユーザが偽陽性と偽陰性とをトレードオフするように調整することができる。
論文 参考訳(メタデータ) (2020-02-11T13:58:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。