DTR-Bench: An in silico Environment and Benchmark Platform for Reinforcement Learning Based Dynamic Treatment Regime
- URL: http://arxiv.org/abs/2405.18610v1
- Date: Tue, 28 May 2024 21:40:00 GMT
- Title: DTR-Bench: An in silico Environment and Benchmark Platform for Reinforcement Learning Based Dynamic Treatment Regime
- Authors: Zhiyao Luo, Mingcheng Zhu, Fenglin Liu, Jiali Li, Yangchen Pan, Jiandong Zhou, Tingting Zhu,
- Abstract summary: Reinforcement learning (RL) has garnered increasing recognition for its potential to optimise dynamic treatment regimes (DTRs) in personalised medicine.
We introduce textitDTR-Bench, a benchmarking platform for simulating diverse healthcare scenarios.
We evaluate various state-of-the-art RL algorithms across these settings, particularly highlighting their performance amidst real-world challenges.
- Score: 18.443316087890324
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reinforcement learning (RL) has garnered increasing recognition for its potential to optimise dynamic treatment regimes (DTRs) in personalised medicine, particularly for drug dosage prescriptions and medication recommendations. However, a significant challenge persists: the absence of a unified framework for simulating diverse healthcare scenarios and a comprehensive analysis to benchmark the effectiveness of RL algorithms within these contexts. To address this gap, we introduce \textit{DTR-Bench}, a benchmarking platform comprising four distinct simulation environments tailored to common DTR applications, including cancer chemotherapy, radiotherapy, glucose management in diabetes, and sepsis treatment. We evaluate various state-of-the-art RL algorithms across these settings, particularly highlighting their performance amidst real-world challenges such as pharmacokinetic/pharmacodynamic (PK/PD) variability, noise, and missing data. Our experiments reveal varying degrees of performance degradation among RL algorithms in the presence of noise and patient variability, with some algorithms failing to converge. Additionally, we observe that using temporal observation representations does not consistently lead to improved performance in DTR settings. Our findings underscore the necessity of developing robust, adaptive RL algorithms capable of effectively managing these complexities to enhance patient-specific healthcare. We have open-sourced our benchmark and code at https://github.com/GilesLuo/DTR-Bench.
Related papers
- Reinforcement Learning in Dynamic Treatment Regimes Needs Critical Reexamination [7.162274565861427]
offline reinforcement learning in dynamic treatment regimes presents a mix of unprecedented opportunities and challenges.
We argue for a reassessment of applying RL in dynamic treatment regimes citing concerns such as inconsistent and potentially inconclusive evaluation metrics.
We demonstrate that the performance of RL algorithms can significantly vary with changes in evaluation metrics and Markov Decision Process (MDP) formulations.
arXiv Detail & Related papers (2024-05-28T20:03:18Z) - Adaptive Multi-Agent Deep Reinforcement Learning for Timely Healthcare Interventions [17.405080523382235]
We propose a novel AI-driven patient monitoring framework using multi-agent deep reinforcement learning (DRL)
Our approach deploys multiple learning agents, each dedicated to monitoring a specific physiological feature, such as heart rate, respiration, and temperature.
We evaluate the performance of the proposed multi-agent DRL framework using real-world physiological and motion data from two datasets.
arXiv Detail & Related papers (2023-09-20T00:42:08Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Kernel-Based Distributed Q-Learning: A Scalable Reinforcement Learning
Approach for Dynamic Treatment Regimes [37.06048335758881]
We present a novel approach, a distributed Q-learning algorithm, for generating dynamic treatment regimes.
We show that our algorithm outperforms both traditional linear Q-learning and commonly used deep Q-learning in terms of both prediction accuracy and computation cost.
arXiv Detail & Related papers (2023-02-21T04:15:34Z) - DA-VSR: Domain Adaptable Volumetric Super-Resolution For Medical Images [69.63915773870758]
We present a novel algorithm called domain adaptable super-resolution (DA-VSR) to better bridge the domain inconsistency gap.
DA-VSR uses a unified feature extraction backbone and a series of network heads to improve image quality over different planes.
We demonstrate that DA-VSR significantly improves super-resolution quality across numerous datasets of different domains.
arXiv Detail & Related papers (2022-10-11T03:16:35Z) - Federated Offline Reinforcement Learning [55.326673977320574]
We propose a multi-site Markov decision process model that allows for both homogeneous and heterogeneous effects across sites.
We design the first federated policy optimization algorithm for offline RL with sample complexity.
We give a theoretical guarantee for the proposed algorithm, where the suboptimality for the learned policies is comparable to the rate as if data is not distributed.
arXiv Detail & Related papers (2022-06-11T18:03:26Z) - Auto-FedRL: Federated Hyperparameter Optimization for
Multi-institutional Medical Image Segmentation [48.821062916381685]
Federated learning (FL) is a distributed machine learning technique that enables collaborative model training while avoiding explicit data sharing.
In this work, we propose an efficient reinforcement learning(RL)-based federated hyperparameter optimization algorithm, termed Auto-FedRL.
The effectiveness of the proposed method is validated on a heterogeneous data split of the CIFAR-10 dataset and two real-world medical image segmentation datasets.
arXiv Detail & Related papers (2022-03-12T04:11:42Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Sample-Efficient Reinforcement Learning via Counterfactual-Based Data
Augmentation [15.451690870640295]
In some scenarios such as healthcare, usually only few records are available for each patient, impeding the application of currentReinforcement learning algorithms.
We propose a data-efficient RL algorithm that exploits structural causal models (SCMs) to model the state dynamics.
We show that counterfactual outcomes are identifiable under mild conditions and that Q- learning on the counterfactual-based augmented data set converges to the optimal value function.
arXiv Detail & Related papers (2020-12-16T17:21:13Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
Dynamic treatment regimes (DTRs) are personalized, adaptive, multi-stage treatment plans that adapt treatment decisions to an individual's initial features and to intermediate outcomes and features at each subsequent stage.
We propose a novel algorithm that, by carefully balancing exploration and exploitation, is guaranteed to achieve rate-optimal regret when the transition and reward models are linear.
arXiv Detail & Related papers (2020-05-06T13:03:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.