Adaptive Multi-Agent Deep Reinforcement Learning for Timely Healthcare Interventions
- URL: http://arxiv.org/abs/2309.10980v4
- Date: Mon, 28 Oct 2024 21:19:01 GMT
- Title: Adaptive Multi-Agent Deep Reinforcement Learning for Timely Healthcare Interventions
- Authors: Thanveer Shaik, Xiaohui Tao, Lin Li, Haoran Xie, Hong-Ning Dai, Feng Zhao, Jianming Yong,
- Abstract summary: We propose a novel AI-driven patient monitoring framework using multi-agent deep reinforcement learning (DRL)
Our approach deploys multiple learning agents, each dedicated to monitoring a specific physiological feature, such as heart rate, respiration, and temperature.
We evaluate the performance of the proposed multi-agent DRL framework using real-world physiological and motion data from two datasets.
- Score: 17.405080523382235
- License:
- Abstract: Effective patient monitoring is vital for timely interventions and improved healthcare outcomes. Traditional monitoring systems often struggle to handle complex, dynamic environments with fluctuating vital signs, leading to delays in identifying critical conditions. To address this challenge, we propose a novel AI-driven patient monitoring framework using multi-agent deep reinforcement learning (DRL). Our approach deploys multiple learning agents, each dedicated to monitoring a specific physiological feature, such as heart rate, respiration, and temperature. These agents interact with a generic healthcare monitoring environment, learn the patients' behavior patterns, and make informed decisions to alert the corresponding Medical Emergency Teams (METs) based on the level of emergency estimated. In this study, we evaluate the performance of the proposed multi-agent DRL framework using real-world physiological and motion data from two datasets: PPG-DaLiA and WESAD. We compare the results with several baseline models, including Q-Learning, PPO, Actor-Critic, Double DQN, and DDPG, as well as monitoring frameworks like WISEML and CA-MAQL. Our experiments demonstrate that the proposed DRL approach outperforms all other baseline models, achieving more accurate monitoring of patient's vital signs. Furthermore, we conduct hyperparameter optimization to fine-tune the learning process of each agent. By optimizing hyperparameters, we enhance the learning rate and discount factor, thereby improving the agents' overall performance in monitoring patient health status.
Related papers
- Graph-Augmented LLMs for Personalized Health Insights: A Case Study in Sleep Analysis [2.303486126296845]
Large Language Models (LLMs) have shown promise in delivering interactive health advice.
Traditional methods like Retrieval-Augmented Generation (RAG) and fine-tuning often fail to fully utilize the complex, multi-dimensional, and temporally relevant data.
This paper introduces a graph-augmented LLM framework designed to significantly enhance the personalization and clarity of health insights.
arXiv Detail & Related papers (2024-06-24T01:22:54Z) - DTR-Bench: An in silico Environment and Benchmark Platform for Reinforcement Learning Based Dynamic Treatment Regime [18.443316087890324]
Reinforcement learning (RL) has garnered increasing recognition for its potential to optimise dynamic treatment regimes (DTRs) in personalised medicine.
We introduce textitDTR-Bench, a benchmarking platform for simulating diverse healthcare scenarios.
We evaluate various state-of-the-art RL algorithms across these settings, particularly highlighting their performance amidst real-world challenges.
arXiv Detail & Related papers (2024-05-28T21:40:00Z) - Deep Reinforcement Learning Empowered Activity-Aware Dynamic Health
Monitoring Systems [69.41229290253605]
Existing monitoring approaches were designed on the premise that medical devices track several health metrics concurrently.
This means that they report all relevant health values within that scope, which can result in excess resource use and the gathering of extraneous data.
We propose Dynamic Activity-Aware Health Monitoring strategy (DActAHM) for striking a balance between optimal monitoring performance and cost efficiency.
arXiv Detail & Related papers (2024-01-19T16:26:35Z) - MR-STGN: Multi-Residual Spatio Temporal Graph Network Using Attention
Fusion for Patient Action Assessment [0.3626013617212666]
We propose an automated approach for patient action assessment using a Multi-Residual Spatio Temporal Graph Network (MR-STGN)
The MR-STGN is specifically designed to capture the dynamics of patient actions.
We evaluate our model on the UI-PRMD dataset demonstrating its performance in accurately predicting real-time patient action scores.
arXiv Detail & Related papers (2023-12-21T01:09:52Z) - DCIR: Dynamic Consistency Intrinsic Reward for Multi-Agent Reinforcement
Learning [84.22561239481901]
We propose a new approach that enables agents to learn whether their behaviors should be consistent with that of other agents.
We evaluate DCIR in multiple environments including Multi-agent Particle, Google Research Football and StarCraft II Micromanagement.
arXiv Detail & Related papers (2023-12-10T06:03:57Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - Safe and Interpretable Estimation of Optimal Treatment Regimes [54.257304443780434]
We operationalize a safe and interpretable framework to identify optimal treatment regimes.
Our findings support personalized treatment strategies based on a patient's medical history and pharmacological features.
arXiv Detail & Related papers (2023-10-23T19:59:10Z) - A Self-supervised Framework for Improved Data-Driven Monitoring of
Stress via Multi-modal Passive Sensing [7.084068935028644]
We propose a multi-modal semi-supervised framework for tracking physiological precursors of the stress response.
Our methodology enables utilizing multi-modal data of differing domains and resolutions from wearable devices.
We perform training experiments using a corpus of real-world data on perceived stress.
arXiv Detail & Related papers (2023-03-24T20:34:46Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.