Is Moral Self-correction An Innate Capability of Large Language Models? A Mechanistic Analysis to Self-correction
- URL: http://arxiv.org/abs/2410.20513v2
- Date: Wed, 13 Nov 2024 13:40:19 GMT
- Title: Is Moral Self-correction An Innate Capability of Large Language Models? A Mechanistic Analysis to Self-correction
- Authors: Zimo Qi, Guangliang Liu, Kristen Marie Johnson, Lu Cheng,
- Abstract summary: We aim to answer two fundamental questions for moral self-correction.
We examine how different self-correction components interact to intervene the embedded morality within hidden states.
We propose a validation framework, self-distinguish, that requires effective self-correction.
- Score: 5.271054803267951
- License:
- Abstract: Though intensive attentions to the self-correction capability of Large Language Models (LLMs), the underlying mechanism of this capability is still under-explored. In this paper, we aim to answer two fundamental questions for moral self-correction: (1) how different components in self-correction, such as Chain-of-Thought (CoT) reasoning, external feedback, and instructional prompts, interact to enable moral self-correction; and (2) is the self-correction one of LLMs' innate capabilities? To answer the first question, we examine how different self-correction components interact to intervene the embedded morality within hidden states, therefore contributing to different performance. For the second question, we (i) evaluate the robustness of moral self-correction by introducing natural language interventions of weak evidence into prompts; (ii) propose a validation framework, self-distinguish, that requires effective self-correction to enable LLMs to distinguish between desirable and undesirable outputs. Our experimental results indicate that there is no universally optimal self-correction method for the tasks considered, although external feedback and CoT can contribute to additional performance gains. However, our mechanistic analysis reveals negative interactions among instructional prompts, CoT, and external feedback, suggesting a conflict between internal knowledge and external feedback. The self-distinguish experiments demonstrate that while LLMs can self-correct their responses, they are unable to reliably distinguish between desired and undesired outputs. With our empirical evidence, we can conclude that moral self-correction is not an innate capability of LLMs acquired during pretraining.
Related papers
- ReVISE: Learning to Refine at Test-Time via Intrinsic Self-Verification [53.80183105328448]
Refine via Intrinsic Self-Verification (ReVISE) is an efficient framework that enables LLMs to self-correct their outputs through self-verification.
Our experiments on various reasoning tasks demonstrate that ReVISE achieves efficient self-correction and significantly improves reasoning performance.
arXiv Detail & Related papers (2025-02-20T13:50:02Z) - Confidence v.s. Critique: A Decomposition of Self-Correction Capability for LLMs [34.203575667558454]
Large Language Models (LLMs) can correct their self-generated responses, but a decline in accuracy after self-correction is also witnessed.
We decompose the self-correction capability into confidence (being confident to correct answers) and critique (turning wrong answers to correct) capabilities.
Our strategy outperforms vanilla SFT in both capabilities and achieves much higher accuracy after self-correction.
arXiv Detail & Related papers (2024-12-27T08:09:11Z) - Understanding the Dark Side of LLMs' Intrinsic Self-Correction [55.51468462722138]
Intrinsic self-correction was proposed to improve LLMs' responses via feedback prompts solely based on their inherent capability.
Recent works show that LLMs' intrinsic self-correction fails without oracle labels as feedback prompts.
We identify intrinsic self-correction can cause LLMs to waver both intermedia and final answers and lead to prompt bias on simple factual questions.
arXiv Detail & Related papers (2024-12-19T15:39:31Z) - Intrinsic Self-correction for Enhanced Morality: An Analysis of Internal Mechanisms and the Superficial Hypothesis [35.734425912914176]
Large Language Models (LLMs) are capable of producing content that perpetuates stereotypes, discrimination, and toxicity.
The recently proposed moral self-correction is a computationally efficient method for reducing harmful content in the responses of LLMs.
We argue that self-correction can help LLMs find a shortcut to more morally correct output, rather than truly reducing the immorality stored in hidden states.
arXiv Detail & Related papers (2024-07-21T22:50:11Z) - Large Language Models have Intrinsic Self-Correction Ability [18.79203446847577]
Large language models (LLMs) have attracted significant attention for their exceptional abilities in various natural language processing tasks.
One promising solution to improve the LLMs' performance is to ask LLMs to revise their answer after generation.
In intrinsic self-correction is considered a promising direction because it does not utilize external knowledge.
arXiv Detail & Related papers (2024-06-21T22:29:40Z) - On the Intrinsic Self-Correction Capability of LLMs: Uncertainty and Latent Concept [36.27550578296276]
Large Language Models (LLMs) are able to improve their responses when instructed to do so, a capability known as self-correction.
In intrinsic self-correction is evident in various applications, but how and why it is effective remains unknown.
We show that intrinsic self-correction can be progressively improved, allowing it to approach a converged state.
arXiv Detail & Related papers (2024-06-04T14:55:43Z) - A Theoretical Understanding of Self-Correction through In-context Alignment [51.622068973630796]
Large language models (LLMs) are capable of improving their abilities purely by self-correction.
We show that when LLMs give relatively accurate self-examinations as rewards, they are capable of refining responses in an in-context way.
Inspired by these findings, we also illustrate applications of self-correction, such as defending against LLM jailbreaks.
arXiv Detail & Related papers (2024-05-28T22:33:02Z) - Small Language Models Need Strong Verifiers to Self-Correct Reasoning [69.94251699982388]
Self-correction has emerged as a promising solution to boost the reasoning performance of large language models (LLMs)
This work explores whether small (= 13B) language models (LMs) have the ability of self-correction on reasoning tasks with minimal inputs from stronger LMs.
arXiv Detail & Related papers (2024-04-26T03:41:28Z) - Confidence Matters: Revisiting Intrinsic Self-Correction Capabilities of Large Language Models [23.42725642076256]
Large Language Models (LLMs) have catalyzed an increasing interest in their self-correction capabilities.
This paper presents a comprehensive investigation into the intrinsic self-correction of LLMs.
We develop an "If-or-Else" (IoE) prompting framework, designed to guide LLMs in assessing their own "confidence"
arXiv Detail & Related papers (2024-02-19T21:38:02Z) - Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation [71.91287418249688]
Large language models (LLMs) often struggle with factual inaccuracies, even when they hold relevant knowledge.
We leverage the self-evaluation capability of an LLM to provide training signals that steer the model towards factuality.
We show that the proposed self-alignment approach substantially enhances factual accuracy over Llama family models across three key knowledge-intensive tasks.
arXiv Detail & Related papers (2024-02-14T15:52:42Z) - Large Language Models Cannot Self-Correct Reasoning Yet [78.16697476530994]
Large Language Models (LLMs) have emerged as a groundbreaking technology with their unparalleled text generation capabilities.
Concerns persist regarding the accuracy and appropriateness of their generated content.
A contemporary methodology, self-correction, has been proposed as a remedy to these issues.
arXiv Detail & Related papers (2023-10-03T04:56:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.