論文の概要: LLM-based Hierarchical Concept Decomposition for Interpretable Fine-Grained Image Classification
- arxiv url: http://arxiv.org/abs/2405.18672v2
- Date: Sun, 2 Jun 2024 23:30:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 13:50:03.119538
- Title: LLM-based Hierarchical Concept Decomposition for Interpretable Fine-Grained Image Classification
- Title(参考訳): 微視的画像分類のためのLLMに基づく階層的概念分解
- Authors: Renyi Qu, Mark Yatskar,
- Abstract要約: 構造化概念解析によるモデル解釈可能性の向上を目的とした新しいフレームワークである textttHi-CoDecomposition を紹介する。
われわれのアプローチは、最先端のモデルの性能だけでなく、意思決定プロセスに対する明確な洞察を提供することで透明性を向上する。
- 参考スコア(独自算出の注目度): 5.8754760054410955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: (Renyi Qu's Master's Thesis) Recent advancements in interpretable models for vision-language tasks have achieved competitive performance; however, their interpretability often suffers due to the reliance on unstructured text outputs from large language models (LLMs). This introduces randomness and compromises both transparency and reliability, which are essential for addressing safety issues in AI systems. We introduce \texttt{Hi-CoDe} (Hierarchical Concept Decomposition), a novel framework designed to enhance model interpretability through structured concept analysis. Our approach consists of two main components: (1) We use GPT-4 to decompose an input image into a structured hierarchy of visual concepts, thereby forming a visual concept tree. (2) We then employ an ensemble of simple linear classifiers that operate on concept-specific features derived from CLIP to perform classification. Our approach not only aligns with the performance of state-of-the-art models but also advances transparency by providing clear insights into the decision-making process and highlighting the importance of various concepts. This allows for a detailed analysis of potential failure modes and improves model compactness, therefore setting a new benchmark in interpretability without compromising the accuracy.
- Abstract(参考訳): (renyi Qu's Master'sthesis)
視覚言語タスクの解釈可能なモデルの最近の進歩は、競争的な性能を達成したが、大きな言語モデル(LLM)からの非構造化テキスト出力に依存しているため、その解釈可能性に悩まされることがしばしばある。
これはランダム性を導入し、AIシステムの安全性問題に対処するために不可欠な透明性と信頼性の両方を損なう。
本稿では,構造化概念解析によるモデル解釈可能性の向上を目的とした新しいフレームワークである‘texttt{Hi-CoDe}(階層概念分解)’を紹介する。
1)入力画像を視覚概念の階層構造に分解し,視覚概念木を形成する。
2) CLIPから派生した概念特化機能を利用する単純な線形分類器のアンサンブルを用いて分類を行う。
我々のアプローチは、最先端のモデルの性能だけでなく、意思決定プロセスに対する明確な洞察を提供し、さまざまな概念の重要性を強調することによって透明性も向上します。
これにより、潜在的な障害モードを詳細に分析し、モデルコンパクト性を向上させることができるため、精度を損なうことなく、新しいベンチマークを解釈可能である。
関連論文リスト
- Preserving Multi-Modal Capabilities of Pre-trained VLMs for Improving Vision-Linguistic Compositionality [69.76121008898677]
きめ細かい選択校正CLIPは局所的硬陰性損失と選択的校正正規化を統合している。
評価の結果、FSC-CLIPは、最先端モデルと同等の合成性を達成できるだけでなく、強力なマルチモーダル能力を保っていることがわかった。
論文 参考訳(メタデータ) (2024-10-07T17:16:20Z) - Decompose the model: Mechanistic interpretability in image models with Generalized Integrated Gradients (GIG) [24.02036048242832]
本稿では,すべての中間層を経由した入力から,データセット全体の最終的な出力まで,経路全体をトレースする新しい手法を提案する。
本稿では,PFV(Pointwise Feature Vectors)とERF(Effective Receptive Fields)を用いて,モデル埋め込みを解釈可能な概念ベクトルに分解する。
そして,汎用統合勾配(GIG)を用いて概念ベクトル間の関係を計算し,モデル行動の包括的,データセットワイドな解析を可能にする。
論文 参考訳(メタデータ) (2024-09-03T05:19:35Z) - Self-supervised Interpretable Concept-based Models for Text Classification [9.340843984411137]
本稿では,自己教師型解釈可能な概念埋め込みモデル(ICEM)を提案する。
我々は,大規模言語モデルの一般化能力を活用し,概念ラベルを自己管理的に予測する。
ICEMは、完全に教師されたコンセプトベースモデルやエンドツーエンドのブラックボックスモデルと同じようなパフォーマンスを達成するために、自己管理的な方法でトレーニングすることができる。
論文 参考訳(メタデータ) (2024-06-20T14:04:53Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
本稿では,視覚的分類タスクにおけるモデル解釈可能性と性能を向上させるための新しい概念学習フレームワークを提案する。
本手法では, 教師なし説明生成器を一次分類器ネットワークに付加し, 対角訓練を利用する。
この研究は、タスク整合概念表現を用いた本質的に解釈可能なディープビジョンモデルを構築するための重要なステップを示す。
論文 参考訳(メタデータ) (2024-01-09T16:16:16Z) - Coarse-to-Fine Concept Bottleneck Models [9.910980079138206]
この研究は、アンテホック解釈可能性、特に概念ボトルネックモデル(CBM)をターゲットにしている。
我々のゴールは、人間の理解可能な概念を2段階の粒度で、高度に解釈可能な意思決定プロセスを認めるフレームワークを設計することである。
この枠組みでは、概念情報は全体像と一般的な非構造概念の類似性にのみ依存せず、画像シーンのパッチ固有の領域に存在するより粒度の細かい概念情報を発見・活用するために概念階層の概念を導入している。
論文 参考訳(メタデータ) (2023-10-03T14:57:31Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
本稿では、画像テキストコントラスト学習(ITC)、テキスト条件付き画像合成学習(IS)、相互意味整合性モデリング(RSC)を統合した統合マルチモーダルモデルUniDiffを提案する。
UniDiffはマルチモーダル理解と生成タスクの両方において汎用性を示す。
論文 参考訳(メタデータ) (2023-06-01T15:39:38Z) - Structure-CLIP: Towards Scene Graph Knowledge to Enhance Multi-modal
Structured Representations [70.41385310930846]
マルチモーダルな構造表現を強化するためのエンドツーエンドフレームワークであるStructure-CLIPを提案する。
シーングラフを用いてセマンティックなネガティブな例の構築をガイドし、その結果、構造化された表現の学習に重点を置いている。
知識エンハンス(KEE)は、SGKを入力として活用し、構造化表現をさらに強化するために提案される。
論文 参考訳(メタデータ) (2023-05-06T03:57:05Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
本稿では, PLM を用いた自己回帰的手法を用いて, モデル構造を行動列として記述する。
我々のアプローチは、私たちが見てきた全ての構造化予測タスクにおいて、新しい最先端を実現する。
論文 参考訳(メタデータ) (2022-10-26T13:27:26Z) - GlanceNets: Interpretabile, Leak-proof Concept-based Models [23.7625973884849]
概念ベースモデル(CBM)は、高レベルの概念の語彙の獲得と推論によって、ハイパフォーマンスと解釈可能性を組み合わせる。
我々は、モデル表現と基礎となるデータ生成プロセスとの整合性の観点から、解釈可能性を明確に定義する。
GlanceNetsは不整合表現学習とオープンセット認識の技法を利用してアライメントを実現する新しいCBMである。
論文 参考訳(メタデータ) (2022-05-31T08:53:53Z) - Translational Concept Embedding for Generalized Compositional Zero-shot
Learning [73.60639796305415]
一般合成ゼロショット学習は、ゼロショット方式で属性オブジェクト対の合成概念を学習する手段である。
本稿では,これら2つの課題を統一的なフレームワークで解決するために,翻訳概念の埋め込み(translational concept embedded)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-12-20T21:27:51Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。