論文の概要: GlanceNets: Interpretabile, Leak-proof Concept-based Models
- arxiv url: http://arxiv.org/abs/2205.15612v1
- Date: Tue, 31 May 2022 08:53:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-01 14:53:18.811301
- Title: GlanceNets: Interpretabile, Leak-proof Concept-based Models
- Title(参考訳): GlanceNets:インタープリタブル、リーク防止コンセプトベースモデル
- Authors: Emanuele Marconato, Andrea Passerini, Stefano Teso
- Abstract要約: 概念ベースモデル(CBM)は、高レベルの概念の語彙の獲得と推論によって、ハイパフォーマンスと解釈可能性を組み合わせる。
我々は、モデル表現と基礎となるデータ生成プロセスとの整合性の観点から、解釈可能性を明確に定義する。
GlanceNetsは不整合表現学習とオープンセット認識の技法を利用してアライメントを実現する新しいCBMである。
- 参考スコア(独自算出の注目度): 23.7625973884849
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is growing interest in concept-based models (CBMs) that combine
high-performance and interpretability by acquiring and reasoning with a
vocabulary of high-level concepts. A key requirement is that the concepts be
interpretable. Existing CBMs tackle this desideratum using a variety of
heuristics based on unclear notions of interpretability, and fail to acquire
concepts with the intended semantics. We address this by providing a clear
definition of interpretability in terms of alignment between the model's
representation and an underlying data generation process, and introduce
GlanceNets, a new CBM that exploits techniques from disentangled representation
learning and open-set recognition to achieve alignment, thus improving the
interpretability of the learned concepts. We show that GlanceNets, paired with
concept-level supervision, achieve better alignment than state-of-the-art
approaches while preventing spurious information from unintendedly leaking into
the learned concepts.
- Abstract(参考訳): ハイレベルな概念の語彙の獲得と推論によってハイパフォーマンスと解釈可能性を組み合わせたコンセプトベースモデル(CBM)への関心が高まっている。
重要な要件は、概念が解釈可能であることである。
既存のCBMは、解釈可能性の不明な概念に基づいて様々なヒューリスティックを使ってこのデシダーラトゥムに取り組み、意図された意味論で概念を習得できなかった。
本稿では,モデル表現と基礎となるデータ生成プロセスとのアライメントの観点から,解釈可能性を明確に定義し,不等角表現学習とオープンセット認識を駆使してアライメントを実現する新しいcbmであるshoenetsを導入することで,学習概念の解釈性を向上させる。
GlanceNetsは、概念レベルの監視と組み合わせて、最先端のアプローチよりも整合性を向上しつつ、意図せずに学習概念に情報が流出することを防ぐ。
関連論文リスト
- Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
ディープニューラルネットワークの「ブラックボックス」問題に対処するために、概念ボトルネックモデル(CBM)が提案されている。
本稿では,典型的なパラダイムを逆転させる新しいCBMアプローチであるDiscover-then-Name-CBM(DN-CBM)を提案する。
我々の概念抽出戦略は、下流のタスクに非依存であり、既にそのモデルに知られている概念を使用するため、効率的である。
論文 参考訳(メタデータ) (2024-07-19T17:50:11Z) - Self-supervised Interpretable Concept-based Models for Text Classification [9.340843984411137]
本稿では,自己教師型解釈可能な概念埋め込みモデル(ICEM)を提案する。
我々は,大規模言語モデルの一般化能力を活用し,概念ラベルを自己管理的に予測する。
ICEMは、完全に教師されたコンセプトベースモデルやエンドツーエンドのブラックボックスモデルと同じようなパフォーマンスを達成するために、自己管理的な方法でトレーニングすることができる。
論文 参考訳(メタデータ) (2024-06-20T14:04:53Z) - LLM-based Hierarchical Concept Decomposition for Interpretable Fine-Grained Image Classification [5.8754760054410955]
構造化概念解析によるモデル解釈可能性の向上を目的とした新しいフレームワークである textttHi-CoDecomposition を紹介する。
われわれのアプローチは、最先端のモデルの性能だけでなく、意思決定プロセスに対する明確な洞察を提供することで透明性を向上する。
論文 参考訳(メタデータ) (2024-05-29T00:36:56Z) - ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPTは、概念知識を事前訓練された言語モデルに注入することを目的としている。
これは、事前訓練されたコンテキストで言及されたエンティティの概念を予測するために、外部エンティティの概念予測を利用する。
実験の結果,ConcEPTは概念強化事前学習により概念知識を向上することがわかった。
論文 参考訳(メタデータ) (2024-01-11T05:05:01Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
本稿では,視覚的分類タスクにおけるモデル解釈可能性と性能を向上させるための新しい概念学習フレームワークを提案する。
本手法では, 教師なし説明生成器を一次分類器ネットワークに付加し, 対角訓練を利用する。
この研究は、タスク整合概念表現を用いた本質的に解釈可能なディープビジョンモデルを構築するための重要なステップを示す。
論文 参考訳(メタデータ) (2024-01-09T16:16:16Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
大規模言語モデル(LLM)は、様々な自然言語処理領域において前例のないブレークスルーを達成した。
LLMの謎的なブラックボックスの性質は、透過的で説明可能なアプリケーションを妨げる、解釈可能性にとって重要な課題である。
本稿では,LLMの全体的解釈を提供することを目的として,スポーシティ誘導技術に係わる新しい方法論を提案する。
論文 参考訳(メタデータ) (2023-12-22T19:55:58Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Coarse-to-Fine Concept Bottleneck Models [9.910980079138206]
この研究は、アンテホック解釈可能性、特に概念ボトルネックモデル(CBM)をターゲットにしている。
我々のゴールは、人間の理解可能な概念を2段階の粒度で、高度に解釈可能な意思決定プロセスを認めるフレームワークを設計することである。
この枠組みでは、概念情報は全体像と一般的な非構造概念の類似性にのみ依存せず、画像シーンのパッチ固有の領域に存在するより粒度の細かい概念情報を発見・活用するために概念階層の概念を導入している。
論文 参考訳(メタデータ) (2023-10-03T14:57:31Z) - Interpretable Neural-Symbolic Concept Reasoning [7.1904050674791185]
概念に基づくモデルは、人間の理解可能な概念のセットに基づいてタスクを学習することでこの問題に対処することを目的としている。
本稿では,概念埋め込みに基づく最初の解釈可能な概念ベースモデルであるDeep Concept Reasoner (DCR)を提案する。
論文 参考訳(メタデータ) (2023-04-27T09:58:15Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
概念活性化ベクトル(Concept Activation Vector, CAV)は、与えられたモデルと概念の潜在表現の間の線形関係を学習することに依存する。
我々は、線形概念関数を超えて概念に基づく解釈を拡張する概念グラディエント(CG)を提案した。
我々は、CGがおもちゃの例と実世界のデータセットの両方でCAVより優れていることを実証した。
論文 参考訳(メタデータ) (2022-08-31T17:06:46Z) - Translational Concept Embedding for Generalized Compositional Zero-shot
Learning [73.60639796305415]
一般合成ゼロショット学習は、ゼロショット方式で属性オブジェクト対の合成概念を学習する手段である。
本稿では,これら2つの課題を統一的なフレームワークで解決するために,翻訳概念の埋め込み(translational concept embedded)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-12-20T21:27:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。