Can GPT Redefine Medical Understanding? Evaluating GPT on Biomedical Machine Reading Comprehension
- URL: http://arxiv.org/abs/2405.18682v2
- Date: Fri, 25 Oct 2024 16:57:43 GMT
- Title: Can GPT Redefine Medical Understanding? Evaluating GPT on Biomedical Machine Reading Comprehension
- Authors: Shubham Vatsal, Ayush Singh,
- Abstract summary: Large language models (LLMs) have shown remarkable performance on many tasks in different domains.
In this work, we evaluate GPT on four closed-book biomedical machine reading comprehension benchmarks.
We propose a prompting strategy named Implicit Retrieval Augmented Generation (RAG) that alleviates the need for using vector databases.
- Score: 2.3231783764387566
- License:
- Abstract: Large language models (LLMs) have shown remarkable performance on many tasks in different domains. However, their performance in closed-book biomedical machine reading comprehension (MRC) has not been evaluated in depth. In this work, we evaluate GPT on four closed-book biomedical MRC benchmarks. We experiment with different conventional prompting techniques as well as introduce our own novel prompting method. To solve some of the retrieval problems inherent to LLMs, we propose a prompting strategy named Implicit Retrieval Augmented Generation (RAG) that alleviates the need for using vector databases to retrieve important chunks in traditional RAG setups. Moreover, we report qualitative assessments on the natural language generation outputs from our approach. The results show that our new prompting technique is able to get the best performance in two out of four datasets and ranks second in rest of them. Experiments show that modern-day LLMs like GPT even in a zero-shot setting can outperform supervised models, leading to new state-of-the-art (SoTA) results on two of the benchmarks.
Related papers
- Automatic Evaluation for Text-to-image Generation: Task-decomposed Framework, Distilled Training, and Meta-evaluation Benchmark [62.58869921806019]
We propose a task decomposition evaluation framework based on GPT-4o to automatically construct a new training dataset.
We design innovative training strategies to effectively distill GPT-4o's evaluation capabilities into a 7B open-source MLLM, MiniCPM-V-2.6.
Experimental results demonstrate that our distilled open-source MLLM significantly outperforms the current state-of-the-art GPT-4o-base baseline.
arXiv Detail & Related papers (2024-11-23T08:06:06Z) - SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation [50.26966969163348]
Large Language Models (LLMs) have shown great potential in the biomedical domain with the advancement of retrieval-augmented generation (RAG)
Existing retrieval-augmented approaches face challenges in addressing diverse queries and documents, particularly for medical knowledge queries.
We propose Self-Rewarding Tree Search (SeRTS) based on Monte Carlo Tree Search (MCTS) and a self-rewarding paradigm.
arXiv Detail & Related papers (2024-06-17T06:48:31Z) - BiomedRAG: A Retrieval Augmented Large Language Model for Biomedicine [19.861178160437827]
Large Language Models (LLMs) have swiftly emerged as vital resources for different applications in the biomedical and healthcare domains.
textscBiomedRAG attains superior performance across 5 biomedical NLP tasks.
textscBiomedRAG outperforms other triple extraction systems with micro-F1 scores of 81.42 and 88.83 on GIT and ChemProt corpora, respectively.
arXiv Detail & Related papers (2024-05-01T12:01:39Z) - PeFoMed: Parameter Efficient Fine-tuning of Multimodal Large Language Models for Medical Imaging [8.043625583479598]
Multimodal large language models (MLLMs) represent an evolutionary expansion in the capabilities of traditional large language models.
Recent works investigate the adaptation of MLLMs as a universal solution to address medical multi-modal problems as a generative task.
We propose a parameter efficient framework for fine-tuning MLLMs, specifically validated on medical visual question answering (Med-VQA) and medical report generation (MRG) tasks.
arXiv Detail & Related papers (2024-01-05T13:22:12Z) - Sequencing Matters: A Generate-Retrieve-Generate Model for Building
Conversational Agents [9.191944519634111]
The Georgetown InfoSense group has done in regard to solving the challenges presented by TREC iKAT 2023.
Our submitted runs outperform the median runs by a significant margin, exhibiting superior performance in nDCG across various cut numbers and in overall success rate.
Our solution involves the use of Large Language Models (LLMs) for initial answers, answer grounding by BM25, passage quality filtering by logistic regression, and answer generation by LLMs again.
arXiv Detail & Related papers (2023-11-16T02:37:58Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
We introduce a simple, yet general and effective prompting method, Re2, to enhance the reasoning capabilities of off-the-shelf Large Language Models (LLMs)
Unlike most thought-eliciting prompting methods, such as Chain-of-Thought (CoT), Re2 shifts the focus to the input by processing questions twice, thereby enhancing the understanding process.
We evaluate Re2 on extensive reasoning benchmarks across 14 datasets, spanning 112 experiments, to validate its effectiveness and generality.
arXiv Detail & Related papers (2023-09-12T14:36:23Z) - How far is Language Model from 100% Few-shot Named Entity Recognition in Medical Domain [14.635536657783613]
This paper aims to compare the performance of LMs in medical few-shot NER and answer How far is LMs from 100% Few-shot NER in Medical Domain.
Our findings clearly indicate that LLMs outperform SLMs in few-shot medical NER tasks, given the presence of suitable examples and appropriate logical frameworks.
We introduce a simple and effective method called textscRT (Retrieving and Thinking), which serves as retrievers, finding relevant examples, and as thinkers, employing a step-by-step reasoning process.
arXiv Detail & Related papers (2023-07-01T01:18:09Z) - A systematic evaluation of large language models for biomedical natural language processing: benchmarks, baselines, and recommendations [22.668383945059762]
We present a systematic evaluation of four representative Large Language Models (LLMs) across 12 BioNLP datasets.
The evaluation is conducted under four settings: zero-shot, static few-shot, dynamic K-nearest few-shot, and fine-tuning.
We compare these models against state-of-the-art (SOTA) approaches that fine-tune (domain-specific) BERT or BART models.
arXiv Detail & Related papers (2023-05-10T13:40:06Z) - Is ChatGPT Good at Search? Investigating Large Language Models as
Re-Ranking Agents [56.104476412839944]
Large Language Models (LLMs) have demonstrated remarkable zero-shot generalization across various language-related tasks.
This paper investigates generative LLMs for relevance ranking in Information Retrieval (IR)
To address concerns about data contamination of LLMs, we collect a new test set called NovelEval.
To improve efficiency in real-world applications, we delve into the potential for distilling the ranking capabilities of ChatGPT into small specialized models.
arXiv Detail & Related papers (2023-04-19T10:16:03Z) - Shall We Pretrain Autoregressive Language Models with Retrieval? A
Comprehensive Study [115.96080028033904]
We study a scalable pre-trained retrieval-augmented LM (i.e., RETRO) compared with standard GPT and retrieval-augmented GPT.
Our findings highlight the promising direction of pretraining autoregressive LMs with retrieval as future foundation models.
arXiv Detail & Related papers (2023-04-13T18:04:19Z) - Document-Level Machine Translation with Large Language Models [91.03359121149595]
Large language models (LLMs) can produce coherent, cohesive, relevant, and fluent answers for various natural language processing (NLP) tasks.
This paper provides an in-depth evaluation of LLMs' ability on discourse modeling.
arXiv Detail & Related papers (2023-04-05T03:49:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.