MD-IQA: Learning Multi-scale Distributed Image Quality Assessment with
Semi Supervised Learning for Low Dose CT
- URL: http://arxiv.org/abs/2311.08024v1
- Date: Tue, 14 Nov 2023 09:33:33 GMT
- Title: MD-IQA: Learning Multi-scale Distributed Image Quality Assessment with
Semi Supervised Learning for Low Dose CT
- Authors: Tao Song, Ruizhi Hou, Lisong Dai, Lei Xiang
- Abstract summary: Image quality assessment (IQA) plays a critical role in optimizing radiation dose and developing novel medical imaging techniques.
Recent deep learning-based approaches have demonstrated strong modeling capabilities and potential for medical IQA.
We propose a multi-scale distributions regression approach to predict quality scores by constraining the output distribution.
- Score: 6.158876574189994
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Image quality assessment (IQA) plays a critical role in optimizing radiation
dose and developing novel medical imaging techniques in computed tomography
(CT). Traditional IQA methods relying on hand-crafted features have limitations
in summarizing the subjective perceptual experience of image quality. Recent
deep learning-based approaches have demonstrated strong modeling capabilities
and potential for medical IQA, but challenges remain regarding model
generalization and perceptual accuracy. In this work, we propose a multi-scale
distributions regression approach to predict quality scores by constraining the
output distribution, thereby improving model generalization. Furthermore, we
design a dual-branch alignment network to enhance feature extraction
capabilities. Additionally, semi-supervised learning is introduced by utilizing
pseudo-labels for unlabeled data to guide model training. Extensive qualitative
experiments demonstrate the effectiveness of our proposed method for advancing
the state-of-the-art in deep learning-based medical IQA. Code is available at:
https://github.com/zunzhumu/MD-IQA.
Related papers
- Sliced Maximal Information Coefficient: A Training-Free Approach for Image Quality Assessment Enhancement [12.628718661568048]
We aim to explore a generalized human visual attention estimation strategy to mimic the process of human quality rating.
In particular, we model human attention generation by measuring the statistical dependency between the degraded image and the reference image.
Experimental results verify the performance of existing IQA models can be consistently improved when our attention module is incorporated.
arXiv Detail & Related papers (2024-08-19T11:55:32Z) - GenzIQA: Generalized Image Quality Assessment using Prompt-Guided Latent Diffusion Models [7.291687946822539]
A major drawback of state-of-the-art NR-IQA methods is their limited ability to generalize across diverse IQA settings.
Recent text-to-image generative models generate meaningful visual concepts with fine details related to text concepts.
In this work, we leverage the denoising process of such diffusion models for generalized IQA by understanding the degree of alignment between learnable quality-aware text prompts and images.
arXiv Detail & Related papers (2024-06-07T05:46:39Z) - DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild [54.139923409101044]
Blind image quality assessment (IQA) in the wild presents significant challenges.
Given the difficulty in collecting large-scale training data, leveraging limited data to develop a model with strong generalization remains an open problem.
Motivated by the robust image perception capabilities of pre-trained text-to-image (T2I) diffusion models, we propose a novel IQA method, diffusion priors-based IQA.
arXiv Detail & Related papers (2024-05-30T12:32:35Z) - Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
We propose integrating deep features from pre-trained visual models with a statistical analysis model to achieve opinion-unaware BIQA (OU-BIQA)
Our proposed model exhibits superior consistency with human visual perception compared to state-of-the-art BIQA models.
arXiv Detail & Related papers (2024-05-29T06:09:34Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-reference point cloud quality assessment (NR-PCQA) aims to automatically evaluate the perceptual quality of distorted point clouds without available reference.
We propose a novel contrastive pre-training framework tailored for PCQA (CoPA)
Our method outperforms the state-of-the-art PCQA methods on popular benchmarks.
arXiv Detail & Related papers (2024-03-15T07:16:07Z) - Comparison of No-Reference Image Quality Models via MAP Estimation in
Diffusion Latents [99.19391983670569]
We show that NR-IQA models can be plugged into the maximum a posteriori (MAP) estimation framework for image enhancement.
Different NR-IQA models are likely to induce different enhanced images, which are ultimately subject to psychophysical testing.
This leads to a new computational method for comparing NR-IQA models within the analysis-by-synthesis framework.
arXiv Detail & Related papers (2024-03-11T03:35:41Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
We propose a novel class of state-of-the-art (SOTA) generative model, which exhibits the capability to model intricate relationships.
We devise a new diffusion restoration network that leverages the produced enhanced image and noise-containing images.
Two visual evaluation branches are designed to comprehensively analyze the obtained high-level feature information.
arXiv Detail & Related papers (2024-02-22T09:39:46Z) - Continual Learning for Blind Image Quality Assessment [80.55119990128419]
Blind image quality assessment (BIQA) models fail to continually adapt to subpopulation shift.
Recent work suggests training BIQA methods on the combination of all available human-rated IQA datasets.
We formulate continual learning for BIQA, where a model learns continually from a stream of IQA datasets.
arXiv Detail & Related papers (2021-02-19T03:07:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.