Sliced Maximal Information Coefficient: A Training-Free Approach for Image Quality Assessment Enhancement
- URL: http://arxiv.org/abs/2408.09920v1
- Date: Mon, 19 Aug 2024 11:55:32 GMT
- Title: Sliced Maximal Information Coefficient: A Training-Free Approach for Image Quality Assessment Enhancement
- Authors: Kang Xiao, Xu Wang, Yulin He, Baoliang Chen, Xuelin Shen,
- Abstract summary: We aim to explore a generalized human visual attention estimation strategy to mimic the process of human quality rating.
In particular, we model human attention generation by measuring the statistical dependency between the degraded image and the reference image.
Experimental results verify the performance of existing IQA models can be consistently improved when our attention module is incorporated.
- Score: 12.628718661568048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Full-reference image quality assessment (FR-IQA) models generally operate by measuring the visual differences between a degraded image and its reference. However, existing FR-IQA models including both the classical ones (eg, PSNR and SSIM) and deep-learning based measures (eg, LPIPS and DISTS) still exhibit limitations in capturing the full perception characteristics of the human visual system (HVS). In this paper, instead of designing a new FR-IQA measure, we aim to explore a generalized human visual attention estimation strategy to mimic the process of human quality rating and enhance existing IQA models. In particular, we model human attention generation by measuring the statistical dependency between the degraded image and the reference image. The dependency is captured in a training-free manner by our proposed sliced maximal information coefficient and exhibits surprising generalization in different IQA measures. Experimental results verify the performance of existing IQA models can be consistently improved when our attention module is incorporated. The source code is available at https://github.com/KANGX99/SMIC.
Related papers
- GenzIQA: Generalized Image Quality Assessment using Prompt-Guided Latent Diffusion Models [7.291687946822539]
A major drawback of state-of-the-art NR-IQA methods is their limited ability to generalize across diverse IQA settings.
Recent text-to-image generative models generate meaningful visual concepts with fine details related to text concepts.
In this work, we leverage the denoising process of such diffusion models for generalized IQA by understanding the degree of alignment between learnable quality-aware text prompts and images.
arXiv Detail & Related papers (2024-06-07T05:46:39Z) - Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
We propose integrating deep features from pre-trained visual models with a statistical analysis model to achieve opinion-unaware BIQA (OU-BIQA)
Our proposed model exhibits superior consistency with human visual perception compared to state-of-the-art BIQA models.
arXiv Detail & Related papers (2024-05-29T06:09:34Z) - Understanding and Evaluating Human Preferences for AI Generated Images with Instruction Tuning [58.41087653543607]
We first establish a novel Image Quality Assessment (IQA) database for AIGIs, termed AIGCIQA2023+.
This paper presents a MINT-IQA model to evaluate and explain human preferences for AIGIs from Multi-perspectives with INstruction Tuning.
arXiv Detail & Related papers (2024-05-12T17:45:11Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Comparison of No-Reference Image Quality Models via MAP Estimation in
Diffusion Latents [99.19391983670569]
We show that NR-IQA models can be plugged into the maximum a posteriori (MAP) estimation framework for image enhancement.
Different NR-IQA models are likely to induce different enhanced images, which are ultimately subject to psychophysical testing.
This leads to a new computational method for comparing NR-IQA models within the analysis-by-synthesis framework.
arXiv Detail & Related papers (2024-03-11T03:35:41Z) - MD-IQA: Learning Multi-scale Distributed Image Quality Assessment with
Semi Supervised Learning for Low Dose CT [6.158876574189994]
Image quality assessment (IQA) plays a critical role in optimizing radiation dose and developing novel medical imaging techniques.
Recent deep learning-based approaches have demonstrated strong modeling capabilities and potential for medical IQA.
We propose a multi-scale distributions regression approach to predict quality scores by constraining the output distribution.
arXiv Detail & Related papers (2023-11-14T09:33:33Z) - Enhancing image quality prediction with self-supervised visual masking [20.190853812320395]
Full-reference image quality metrics (FR-IQMs) aim to measure the visual differences between a pair of reference and distorted images.
We propose to predict a visual masking model that modulates reference and distorted images in a way that penalizes the visual errors based on their visibility.
Our approach results in enhanced FR-IQM metrics that are more in line with human prediction both visually and quantitatively.
arXiv Detail & Related papers (2023-05-31T13:48:51Z) - Perceptual Attacks of No-Reference Image Quality Models with
Human-in-the-Loop [113.75573175709573]
We make one of the first attempts to examine the perceptual robustness of NR-IQA models.
We test one knowledge-driven and three data-driven NR-IQA methods under four full-reference IQA models.
We find that all four NR-IQA models are vulnerable to the proposed perceptual attack.
arXiv Detail & Related papers (2022-10-03T13:47:16Z) - Conformer and Blind Noisy Students for Improved Image Quality Assessment [80.57006406834466]
Learning-based approaches for perceptual image quality assessment (IQA) usually require both the distorted and reference image for measuring the perceptual quality accurately.
In this work, we explore the performance of transformer-based full-reference IQA models.
We also propose a method for IQA based on semi-supervised knowledge distillation from full-reference teacher models into blind student models.
arXiv Detail & Related papers (2022-04-27T10:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.