論文の概要: BRACTIVE: A Brain Activation Approach to Human Visual Brain Learning
- arxiv url: http://arxiv.org/abs/2405.18808v1
- Date: Wed, 29 May 2024 06:50:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 18:28:55.415096
- Title: BRACTIVE: A Brain Activation Approach to Human Visual Brain Learning
- Title(参考訳): BRACTIVE:人間の視覚脳学習における脳活動的アプローチ
- Authors: Xuan-Bac Nguyen, Hojin Jang, Xin Li, Samee U. Khan, Pawan Sinha, Khoa Luu,
- Abstract要約: 本稿では,脳活動ネットワーク(BRACTIVE)について紹介する。
BRACTIVEの主な目的は、被験者の視覚的特徴をfMRI信号を介して対応する脳表現と整合させることである。
実験の結果, BRACTIVEは顔や身体選択領域など, 個人特有の関心領域を効果的に識別できることがわかった。
- 参考スコア(独自算出の注目度): 11.517021103782229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The human brain is a highly efficient processing unit, and understanding how it works can inspire new algorithms and architectures in machine learning. In this work, we introduce a novel framework named Brain Activation Network (BRACTIVE), a transformer-based approach to studying the human visual brain. The main objective of BRACTIVE is to align the visual features of subjects with corresponding brain representations via fMRI signals. It allows us to identify the brain's Regions of Interest (ROI) of the subjects. Unlike previous brain research methods, which can only identify ROIs for one subject at a time and are limited by the number of subjects, BRACTIVE automatically extends this identification to multiple subjects and ROIs. Our experiments demonstrate that BRACTIVE effectively identifies person-specific regions of interest, such as face and body-selective areas, aligning with neuroscience findings and indicating potential applicability to various object categories. More importantly, we found that leveraging human visual brain activity to guide deep neural networks enhances performance across various benchmarks. It encourages the potential of BRACTIVE in both neuroscience and machine intelligence studies.
- Abstract(参考訳): 人間の脳は、非常に効率的な処理ユニットであり、その仕組みを理解することによって、機械学習における新しいアルゴリズムとアーキテクチャを刺激することができる。
本研究では,脳活動ネットワーク(BRACTIVE)という,人間の視覚脳を研究するためのトランスフォーマーベースのアプローチを紹介する。
BRACTIVEの主な目的は、被験者の視覚的特徴をfMRI信号を介して対応する脳表現と整合させることである。
これにより、被験者の脳の関心領域(ROI)を特定できます。
従来の脳研究手法とは異なり、1つの被験者のROIしか識別できず、被験者数によって制限されているが、BRACTIVEは自動的に複数の被験者とROIに識別を拡張している。
実験の結果, BRACTIVEは, 顔や身体選択領域などの興味のある領域を効果的に同定し, 神経科学的な所見と整合し, 様々な対象カテゴリーに適用可能であることが示された。
さらに重要なのは、人間の視覚的脳活動を利用して、ディープニューラルネットワークを誘導することで、さまざまなベンチマークのパフォーマンスが向上することです。
これは、神経科学と機械知能研究の両方においてBRACTIVEの可能性を促進する。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - Achieving More Human Brain-Like Vision via Human EEG Representational Alignment [1.811217832697894]
非侵襲脳波に基づく人間の脳活動に対応する視覚モデル「Re(presentational)Al(ignment)net」を提案する。
我々の革新的な画像から脳への多層符号化フレームワークは、複数のモデル層を最適化することにより、人間の神経のアライメントを向上する。
我々の発見は、ReAlnetが人工と人間の視覚のギャップを埋め、より脳に似た人工知能システムへの道を歩むブレークスルーを表していることを示唆している。
論文 参考訳(メタデータ) (2024-01-30T18:18:41Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - BI AVAN: Brain inspired Adversarial Visual Attention Network [67.05560966998559]
機能的脳活動から直接人間の視覚的注意を特徴付ける脳誘発対人視覚注意ネットワーク(BI-AVAN)を提案する。
本モデルは,人間の脳が監督されていない方法で焦点を絞った映画フレーム内の視覚的物体を識別・発見するために,注意関連・無視対象間の偏りのある競合過程を模倣する。
論文 参考訳(メタデータ) (2022-10-27T22:20:36Z) - Explainable fMRI-based Brain Decoding via Spatial Temporal-pyramid Graph
Convolutional Network [0.8399688944263843]
既存のfMRIベースの脳デコードのための機械学習手法は、分類性能が低いか、説明性が悪いかのいずれかに悩まされている。
本稿では,機能的脳活動の時空間グラフ表現を捉えるために,生物学的にインスパイアされたアーキテクチャである時空間ピラミドグラフ畳み込みネットワーク(STpGCN)を提案する。
我々は,Human Connectome Project (HCP) S1200から23の認知タスク下でのfMRIデータに関する広範な実験を行った。
論文 参考訳(メタデータ) (2022-10-08T12:14:33Z) - An Investigation on Non-Invasive Brain-Computer Interfaces: Emotiv Epoc+
Neuroheadset and Its Effectiveness [0.7734726150561089]
人間の脳から直接人間の音声を、Facebook Reality Labとカリフォルニア大学サンフランシスコ校が導入したデジタルスクリーンにデコードする。
そこで我々は,脳-機械インタフェース(BMI)アプローチを用いて,ヒト脳を制御するビジョンプロジェクトについて検討した。
我々は、非侵襲的、挿入可能、低コストのBCIアプローチが、身体麻痺の患者だけでなく、脳を理解するための代替手段の焦点となると想定している。
論文 参考訳(メタデータ) (2022-06-24T05:45:48Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Attention Patterns Detection using Brain Computer Interfaces [1.174402845822043]
本研究では,人間の注意レベルとその学習への影響を評価・定量化する手法を提案する。
脳波を検知し、対応する脳波図(EEG)を表示する脳コンピュータインタフェース(BCI)を採用している。
我々は、個人が実行しているアクティビティのタイプを特定するために、繰り返しニューラルネットワーク(RNNS)を訓練する。
論文 参考訳(メタデータ) (2020-05-20T11:55:37Z) - A Developmental Neuro-Robotics Approach for Boosting the Recognition of
Handwritten Digits [91.3755431537592]
近年のエビデンスでは、子どもの体現戦略をシミュレーションすることで、マシンインテリジェンスも改善できることが示されている。
本稿では,発達神経ロボティクスの文脈における畳み込みニューラルネットワークモデルへの具体的戦略の適用について検討する。
論文 参考訳(メタデータ) (2020-03-23T14:55:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。