Flow Priors for Linear Inverse Problems via Iterative Corrupted Trajectory Matching
- URL: http://arxiv.org/abs/2405.18816v1
- Date: Wed, 29 May 2024 06:56:12 GMT
- Title: Flow Priors for Linear Inverse Problems via Iterative Corrupted Trajectory Matching
- Authors: Yasi Zhang, Peiyu Yu, Yaxuan Zhu, Yingshan Chang, Feng Gao, Ying Nian Wu, Oscar Leong,
- Abstract summary: We propose an iterative algorithm to approximate the MAP estimator efficiently to solve a variety of linear inverse problems.
Our algorithm is mathematically justified by the observation that the MAP objective can be approximated by a sum of $N$ local MAP'' objectives.
We validate our approach for various linear inverse problems, such as super-resolution, deblurring, inpainting, and compressed sensing.
- Score: 35.77769905072651
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models based on flow matching have attracted significant attention for their simplicity and superior performance in high-resolution image synthesis. By leveraging the instantaneous change-of-variables formula, one can directly compute image likelihoods from a learned flow, making them enticing candidates as priors for downstream tasks such as inverse problems. In particular, a natural approach would be to incorporate such image probabilities in a maximum-a-posteriori (MAP) estimation problem. A major obstacle, however, lies in the slow computation of the log-likelihood, as it requires backpropagating through an ODE solver, which can be prohibitively slow for high-dimensional problems. In this work, we propose an iterative algorithm to approximate the MAP estimator efficiently to solve a variety of linear inverse problems. Our algorithm is mathematically justified by the observation that the MAP objective can be approximated by a sum of $N$ ``local MAP'' objectives, where $N$ is the number of function evaluations. By leveraging Tweedie's formula, we show that we can perform gradient steps to sequentially optimize these objectives. We validate our approach for various linear inverse problems, such as super-resolution, deblurring, inpainting, and compressed sensing, and demonstrate that we can outperform other methods based on flow matching.
Related papers
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - Inverse Problems with Diffusion Models: A MAP Estimation Perspective [5.002087490888723]
In Computer, several image restoration tasks such as inpainting, deblurring, and super-resolution can be formally modeled as inverse problems.
We propose a MAP estimation framework to model the reverse conditional generation process of a continuous time diffusion model.
We use our proposed framework to develop effective algorithms for image restoration.
arXiv Detail & Related papers (2024-07-27T15:41:13Z) - Fast Screening Rules for Optimal Design via Quadratic Lasso
Reformulation [0.135975510645475]
In this work, we derive safe screening rules that can be used to discard inessential samples.
The new tests are much faster to compute, especially for problems involving a parameter space of high dimension.
We show how an existing homotopy algorithm to compute the regularization path of the lasso method can be reparametrized with respect to the squared $ell_$-penalty.
arXiv Detail & Related papers (2023-10-13T08:10:46Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Converting ADMM to a Proximal Gradient for Convex Optimization Problems [4.56877715768796]
In sparse estimation, such as fused lasso and convex clustering, we apply either the proximal gradient method or the alternating direction method of multipliers (ADMM) to solve the problem.
This paper proposes a general method for converting the ADMM solution to the proximal gradient method, assuming that the constraints and objectives are strongly convex.
We show by numerical experiments that we can obtain a significant improvement in terms of efficiency.
arXiv Detail & Related papers (2021-04-22T07:41:12Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Learning to solve TV regularized problems with unrolled algorithms [18.241062505073234]
Total Variation (TV) is a popular regularization strategy that promotes piece-wise constant signals.
We develop and characterize two approaches to do so, describe their benefits and limitations, and discuss the regime where they can actually improve over iterative procedures.
arXiv Detail & Related papers (2020-10-19T14:19:02Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - Stochastic Optimization for Regularized Wasserstein Estimators [10.194798773447879]
We introduce an algorithm to solve a regularized version of the problem of Wasserstein estimators gradient, with a time per step which is sublinear in the natural dimensions.
We show that this algorithm can be extended to other tasks, including estimation of Wasserstein barycenters.
arXiv Detail & Related papers (2020-02-20T12:04:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.