論文の概要: Parameter-efficient Fine-tuning in Hyperspherical Space for Open-vocabulary Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2405.18840v1
- Date: Wed, 29 May 2024 07:41:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 18:19:11.017811
- Title: Parameter-efficient Fine-tuning in Hyperspherical Space for Open-vocabulary Semantic Segmentation
- Title(参考訳): 開語彙セマンティックセグメンテーションのための超球面空間におけるパラメータ効率の微調整
- Authors: Zelin Peng, Zhengqin Xu, Zhilin Zeng, Yaoming Wang, Lingxi Xie, Qi Tian, Wei Shen,
- Abstract要約: オープンボキャブラリセマンティックセグメンテーションは、画像中の各ピクセルに任意のテキスト記述をラベル付けしようとする。
視覚言語基盤モデル、特にCLIPは、オープン語彙能力を取得するための強力なツールとして登場した。
H-CLIPは、CLIPの総パラメータの約4%を更新するだけで、新しいSOTAオープン語彙セマンティックセマンティックセマンティクス結果を達成する。
- 参考スコア(独自算出の注目度): 79.66299178949257
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Open-vocabulary semantic segmentation seeks to label each pixel in an image with arbitrary text descriptions. Vision-language foundation models, especially CLIP, have recently emerged as powerful tools for acquiring open-vocabulary capabilities. However, fine-tuning CLIP to equip it with pixel-level prediction ability often suffers three issues: 1) high computational cost, 2) misalignment between the two inherent modalities of CLIP, and 3) degraded generalization ability on unseen categories. To address these issues, we propose H-CLIP a symmetrical parameter-efficient fine-tuning (PEFT) strategy conducted in hyperspherical space for both of the two CLIP modalities. Specifically, the PEFT strategy is achieved by a series of efficient block-diagonal learnable transformation matrices and a dual cross-relation communication module among all learnable matrices. Since the PEFT strategy is conducted symmetrically to the two CLIP modalities, the misalignment between them is mitigated. Furthermore, we apply an additional constraint to PEFT on the CLIP text encoder according to the hyperspherical energy principle, i.e., minimizing hyperspherical energy during fine-tuning preserves the intrinsic structure of the original parameter space, to prevent the destruction of the generalization ability offered by the CLIP text encoder. Extensive evaluations across various benchmarks show that H-CLIP achieves new SOTA open-vocabulary semantic segmentation results while only requiring updating approximately 4% of the total parameters of CLIP.
- Abstract(参考訳): オープンボキャブラリセマンティックセグメンテーションは、画像中の各ピクセルに任意のテキスト記述をラベル付けしようとする。
ビジョン言語基盤モデル、特にCLIPは、最近、オープン語彙機能を取得するための強力なツールとして登場した。
しかし、ピクセルレベルの予測能力を備えた微調整のCLIPは、しばしば3つの問題に悩まされる。
1 計算コストが高いこと。
2)CLIPとCLIPの2つの性質の相違
3) 目に見えないカテゴリーにおける一般化能力の低下。
これらの問題に対処するため, 2つのCLIPモダリティに対して超球面空間で実施される対称パラメータ効率細調整(PEFT)戦略を提案する。
具体的には、PEFT戦略は、全ての学習可能な行列のうち、効率的なブロック対角学習可能な変換行列と二重相互関係通信モジュールによって達成される。
PEFT戦略は2つのCLIPモダリティと対称に行われるので、それら間のミスアライメントが軽減される。
さらに,CLIPテキストエンコーダにおいて,超球面エネルギーの原理に従ってPEFTに新たな制約を適用する。すなわち,微調整時の超球面エネルギーの最小化は,CLIPテキストエンコーダが提供する一般化能力の破壊を防止するため,元のパラメータ空間の内在的構造を保存する。
様々なベンチマークにおいて、H-CLIPは、CLIPの総パラメータの約4%を更新するだけで、新しいSOTAオープン語彙セマンティックセマンティックセグメンテーション結果を達成することが示された。
関連論文リスト
- Self-Calibrated CLIP for Training-Free Open-Vocabulary Segmentation [19.749490092520006]
Self-Calibrated CLIP (SC-CLIP) は、CLIPを校正してより微細な言語表現を生成する訓練不要の手法である。
SC-CLIPはバニラCLIP ViT-L/14の性能を6.8倍向上させる。
論文 参考訳(メタデータ) (2024-11-24T15:14:05Z) - Generalization Boosted Adapter for Open-Vocabulary Segmentation [15.91026999425076]
Generalization Boosted Adapter (GBA) は、視覚言語モデルの一般化と堅牢性を高める新しいアダプタ戦略である。
シンプルで効率的でプラグアンドプレイなコンポーネントとして、GAAは様々なCLIPベースのメソッドに柔軟に統合できる。
論文 参考訳(メタデータ) (2024-09-13T01:49:12Z) - Spectral Prompt Tuning:Unveiling Unseen Classes for Zero-Shot Semantic Segmentation [20.880942041889444]
画像からピクセルへのCLIPの適応性を改善する一段階アプローチであるSPT-SEGを提案する。
具体的には、スペクトルプロンプトチューニング(SPT)を導入し、CLIP視覚エンコーダの浅い層にスペクトルプロンプトを組み込む。
我々は、最先端のアプローチよりもメソッドが優れていることを実証し、すべてのクラスでうまく機能し、特に目に見えないクラスを扱うのに優れています。
論文 参考訳(メタデータ) (2023-12-20T04:27:13Z) - Symmetrical Linguistic Feature Distillation with CLIP for Scene Text
Recognition [77.93678598476149]
CLIP-OCR(Symmetrical Linguistic Feature Distillation framework)を新たに構築する。
CLIP画像エンコーダを逆CLIPテキストエンコーダでカスケードすることにより、画像からテキストまでの特徴フローで対称構造を構築する。
大規模な実験では、CLIP-OCRが6つのSTRベンチマークで平均精度93.8%で有効であることが示されている。
論文 参考訳(メタデータ) (2023-10-08T04:00:20Z) - Learning a Fourier Transform for Linear Relative Positional Encodings in Transformers [71.32827362323205]
我々はLearner-Transformer (Learners)と呼ばれる線形変換器の新しいクラスを提案する。
様々な相対的位置エンコーディング機構(RPE)を組み込んでいる。
これらには、シーケンシャルデータに適用される正規の RPE 技術や、高次元ユークリッド空間に埋め込まれた幾何学的データを操作する新しい RPE などが含まれる。
論文 参考訳(メタデータ) (2023-02-03T18:57:17Z) - ZegCLIP: Towards Adapting CLIP for Zero-shot Semantic Segmentation [35.60888272729273]
近年、CLIPは2段階のスキームを用いて画素レベルのゼロショット学習タスクに適用されている。
このような方式は有効であるが、2つの画像エンコーダが必要であり、1つは提案生成用、もう1つはCLIP用であり、複雑なパイプラインと高い計算コストをもたらす。
本稿では,CLIPのゼロショット予測能力を画像からピクセルレベルまで直接拡張する,シンプルかつ効率的なワンステージソリューションを提案する。
論文 参考訳(メタデータ) (2022-12-07T12:05:00Z) - Universal Online Convex Optimization Meets Second-order Bounds [74.0120666722487]
ユニバーサルオンライン凸最適化のための簡単な戦略を提案する。
主要なアイデアは、オリジナルのオンライン機能を処理するための専門家のセットを構築し、線形化された損失に対してメタアルゴリズムをデプロイすることである。
このようにして、私たちはブラックボックスの専門家として、既成のオンライン問題解決者をプラグインして、問題依存の後悔の限界を提供することができます。
論文 参考訳(メタデータ) (2021-05-08T11:43:49Z) - Efficient Semantic Image Synthesis via Class-Adaptive Normalization [116.63715955932174]
クラス適応正規化(CLADE)は、セマンティッククラスにのみ適応する軽量かつ等価なバリアントである。
セマンティクスレイアウトから計算したクラス内位置マップエンコーディングを導入し,cladeの正規化パラメータを変調する。
提案されたCLADEは異なるSPADEベースのメソッドに一般化し、SPADEと比較して同等の生成品質を達成できる。
論文 参考訳(メタデータ) (2020-12-08T18:59:32Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
本稿では、DS2CF-Netと呼ばれる、拡張された事前制約付きDual-Constrained Deep Semi-Supervised Coupled Factorization Networkを提案する。
隠れた深い特徴を抽出するために、DS2CF-Netは、深い構造と幾何学的な構造に制約のあるニューラルネットワークとしてモデル化される。
我々のネットワークは、表現学習とクラスタリングのための最先端の性能を得ることができる。
論文 参考訳(メタデータ) (2020-09-08T13:10:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。