論文の概要: Topological Perspectives on Optimal Multimodal Embedding Spaces
- arxiv url: http://arxiv.org/abs/2405.18867v1
- Date: Wed, 29 May 2024 08:28:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 18:09:15.344568
- Title: Topological Perspectives on Optimal Multimodal Embedding Spaces
- Title(参考訳): 最適マルチモーダル埋め込み空間のトポロジ的展望
- Authors: Abdul Aziz A. B, A. B Abdul Rahim,
- Abstract要約: 本稿では,CLIPと最近のCLOOBの比較分析について述べる。
提案手法は,モダリティギャップドライバ,高次元と低次元の両方に存在するクラスタリング構造,および各埋め込み空間を形成する上で,次元崩壊が果たす重要な役割を包括的に検討することを含む。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent strides in multimodal model development have ignited a paradigm shift in the realm of text-to-image generation. Among these advancements, CLIP stands out as a remarkable achievement which is a sophisticated autoencoder adept at encoding both textual and visual information within a unified latent space. This paper delves into a comparative analysis between CLIP and its recent counterpart, CLOOB. To unravel the intricate distinctions within the embedding spaces crafted by these models, we employ topological data analysis. Our approach encompasses a comprehensive examination of the modality gap drivers, the clustering structures existing across both high and low dimensions, and the pivotal role that dimension collapse plays in shaping their respective embedding spaces. Empirical experiments substantiate the implications of our analyses on downstream performance across various contextual scenarios. Through this investigation, we aim to shed light on the nuanced intricacies that underlie the comparative efficacy of CLIP and CLOOB, offering insights into their respective strengths and weaknesses, and providing a foundation for further refinement and advancement in multimodal model research.
- Abstract(参考訳): マルチモーダルモデル開発における最近の進歩は、テキスト・ツー・イメージ生成の領域におけるパラダイムシフトを浮き彫りにした。
これらの進歩の中で、CLIPは、テキスト情報と視覚情報を一体化された潜在空間内にエンコードする高度なオートエンコーダである、顕著な成果として際立っている。
本稿では,CLIPと最近のCLOOBの比較分析について述べる。
これらのモデルによって構築された埋め込み空間内での複雑な区別を明らかにするために、トポロジカルデータ解析を用いる。
提案手法は,モダリティギャップドライバ,高次元と低次元の両方に存在するクラスタリング構造,および各埋め込み空間を形成する上で,次元崩壊が果たす重要な役割を包括的に検討することを含む。
実証実験は、様々な文脈シナリオにおける下流性能に関する分析の影響を裏付けるものである。
本研究は,CLIP と CLOOB の比較効果を生かし,それぞれの長所と短所に関する知見を提供し,マルチモーダルモデル研究のさらなる洗練と発展のための基盤を提供することを目的としている。
関連論文リスト
- Exploring the Precise Dynamics of Single-Layer GAN Models: Leveraging Multi-Feature Discriminators for High-Dimensional Subspace Learning [0.0]
サブスペース学習の観点から,単層GANモデルのトレーニングダイナミクスについて検討する。
解析をサブスペース学習の領域にブリッジすることで,従来の手法と比較してGAN法の有効性を体系的に比較する。
論文 参考訳(メタデータ) (2024-11-01T10:21:12Z) - Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
生成的トレーニングにより、視覚言語モデル(VLM)は様々な複雑なタスクに取り組むことができる。
CLIPのようなモデルで実証された差別的トレーニングは、ゼロショットイメージテキストの分類と検索に優れています。
本稿では,両パラダイムの強みを統合する統一的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-01T01:51:31Z) - Persistent Topological Features in Large Language Models [0.6597195879147556]
トポロジ的特徴の持続性と変換を定量化する新しい指標である永続化類似性を導入する。
従来の類似度測定とは異なり、我々の手法はこれらの特徴の進化軌道全体を捉えている。
実用的なアプリケーションとして、永続化の類似性を活用して冗長なレイヤを特定し、実行します。
論文 参考訳(メタデータ) (2024-10-14T19:46:23Z) - Linking Robustness and Generalization: A k* Distribution Analysis of Concept Clustering in Latent Space for Vision Models [56.89974470863207]
本稿では,局所的近傍解析手法であるk*分布を用いて,個々の概念のレベルで学習された潜伏空間について検討する。
視覚モデルの潜在空間の全体的品質を評価するために、個々の概念を解釈するための歪度に基づく真および近似メトリクスを導入する。
論文 参考訳(メタデータ) (2024-08-17T01:43:51Z) - Making Long-Context Language Models Better Multi-Hop Reasoners [42.09676404515287]
本稿では,各アサーションに対するアトリビューションの供給を促す新しいアプローチであるReasoning with Attributionsを紹介する。
我々は,プロプライエタリモデルとオープンソースモデルの両方を用いて,3つのマルチホップデータセットの実験を通じてアプローチを検証する。
本モデルでは,ChatGPT や Claude-Instant などの独自の LM を並列化して,マルチホップ推論ベンチマーク上での競合性能を実現する。
論文 参考訳(メタデータ) (2024-08-06T15:06:40Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Explore In-Context Segmentation via Latent Diffusion Models [132.26274147026854]
潜在拡散モデル(LDM)は、文脈内セグメンテーションに有効な最小限のモデルである。
画像とビデオの両方のデータセットを含む、新しい、公正なコンテキスト内セグメンテーションベンチマークを構築します。
論文 参考訳(メタデータ) (2024-03-14T17:52:31Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Subspace-Contrastive Multi-View Clustering [0.0]
本稿では,SCMC(Subspace-Contrastive Multi-View Clustering)アプローチを提案する。
ビュー固有のオートエンコーダを用いて、元のマルチビューデータを非線形構造を知覚するコンパクトな特徴にマッピングする。
提案モデルの有効性を実証するために,8つの課題データセットに対して比較実験を多数実施する。
論文 参考訳(メタデータ) (2022-10-13T07:19:37Z) - Generalization Properties of Optimal Transport GANs with Latent
Distribution Learning [52.25145141639159]
本研究では,潜伏分布とプッシュフォワードマップの複雑さの相互作用が性能に与える影響について検討する。
我々の分析に感銘を受けて、我々はGANパラダイム内での潜伏分布とプッシュフォワードマップの学習を提唱した。
論文 参考訳(メタデータ) (2020-07-29T07:31:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。