Single image super-resolution based on trainable feature matching attention network
- URL: http://arxiv.org/abs/2405.18872v1
- Date: Wed, 29 May 2024 08:31:54 GMT
- Title: Single image super-resolution based on trainable feature matching attention network
- Authors: Qizhou Chen, Qing Shao,
- Abstract summary: Convolutional Neural Networks (CNNs) have been widely employed for image Super-Resolution (SR)
We introduce Trainable Feature Matching (TFM) to amalgamate explicit feature learning into CNNs, augmenting their representation capabilities.
We also propose a streamlined variant called Same-size-divided Region-level Non-Local (SRNL) to alleviate the computational demands of non-local operations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional Neural Networks (CNNs) have been widely employed for image Super-Resolution (SR) in recent years. Various techniques enhance SR performance by altering CNN structures or incorporating improved self-attention mechanisms. Interestingly, these advancements share a common trait. Instead of explicitly learning high-frequency details, they learn an implicit feature processing mode that utilizes weighted sums of a feature map's own elements for reconstruction, akin to convolution and non-local. In contrast, early dictionary-based approaches learn feature decompositions explicitly to match and rebuild Low-Resolution (LR) features. Building on this analysis, we introduce Trainable Feature Matching (TFM) to amalgamate this explicit feature learning into CNNs, augmenting their representation capabilities. Within TFM, trainable feature sets are integrated to explicitly learn features from training images through feature matching. Furthermore, we integrate non-local and channel attention into our proposed Trainable Feature Matching Attention Network (TFMAN) to further enhance SR performance. To alleviate the computational demands of non-local operations, we propose a streamlined variant called Same-size-divided Region-level Non-Local (SRNL). SRNL conducts non-local computations in parallel on blocks uniformly divided from the input feature map. The efficacy of TFM and SRNL is validated through ablation studies and module explorations. We employ a recurrent convolutional network as the backbone of our TFMAN to optimize parameter utilization. Comprehensive experiments on benchmark datasets demonstrate that TFMAN achieves superior results in most comparisons while using fewer parameters. The code is available at https://github.com/qizhou000/tfman.
Related papers
- Visualising Feature Learning in Deep Neural Networks by Diagonalizing the Forward Feature Map [4.776836972093627]
We present a method for analysing feature learning by decomposing deep neural networks (DNNs)
We find that DNNs converge to a minimal feature (MF) regime dominated by a number of eigenfunctions equal to the number of classes.
We recast the phenomenon of neural collapse into a kernel picture which can be extended to broader tasks such as regression.
arXiv Detail & Related papers (2024-10-05T18:53:48Z) - Do deep neural networks have an inbuilt Occam's razor? [1.1470070927586016]
We show that structured data combined with an intrinsic Occam's razor-like inductive bias towards simple functions counteracts the exponential growth of functions with complexity.
This analysis reveals that structured data, combined with an intrinsic Occam's razor-like inductive bias towards (Kolmogorov) simple functions that is strong enough to counteract the exponential growth of functions with complexity, is a key to the success of DNNs.
arXiv Detail & Related papers (2023-04-13T16:58:21Z) - Learning Detail-Structure Alternative Optimization for Blind
Super-Resolution [69.11604249813304]
We propose an effective and kernel-free network, namely DSSR, which enables recurrent detail-structure alternative optimization without blur kernel prior incorporation for blind SR.
In our DSSR, a detail-structure modulation module (DSMM) is built to exploit the interaction and collaboration of image details and structures.
Our method achieves the state-of-the-art against existing methods.
arXiv Detail & Related papers (2022-12-03T14:44:17Z) - Magic ELF: Image Deraining Meets Association Learning and Transformer [63.761812092934576]
This paper aims to unify CNN and Transformer to take advantage of their learning merits for image deraining.
A novel multi-input attention module (MAM) is proposed to associate rain removal and background recovery.
Our proposed method (dubbed as ELF) outperforms the state-of-the-art approach (MPRNet) by 0.25 dB on average.
arXiv Detail & Related papers (2022-07-21T12:50:54Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - GhostSR: Learning Ghost Features for Efficient Image Super-Resolution [49.393251361038025]
Single image super-resolution (SISR) system based on convolutional neural networks (CNNs) achieves fancy performance while requires huge computational costs.
We propose to use shift operation to generate the redundant features (i.e., Ghost features) of SISR models.
We show that both the non-compact and lightweight SISR models embedded in our proposed module can achieve comparable performance to that of their baselines.
arXiv Detail & Related papers (2021-01-21T10:09:47Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
We present a deep interleaved network (DIN) that learns how information at different states should be combined for high-quality (HQ) images reconstruction.
In this paper, we propose asymmetric co-attention (AsyCA) which is attached at each interleaved node to model the feature dependencies.
Our presented DIN can be trained end-to-end and applied to various image restoration tasks.
arXiv Detail & Related papers (2020-10-29T15:32:00Z) - Joint Self-Attention and Scale-Aggregation for Self-Calibrated Deraining
Network [13.628218953897946]
In this paper, we propose an effective algorithm, called JDNet, to solve the single image deraining problem.
By designing the Scale-Aggregation and Self-Attention modules with Self-Calibrated convolution skillfully, the proposed model has better deraining results.
arXiv Detail & Related papers (2020-08-06T17:04:34Z) - Sequential Hierarchical Learning with Distribution Transformation for
Image Super-Resolution [83.70890515772456]
We build a sequential hierarchical learning super-resolution network (SHSR) for effective image SR.
We consider the inter-scale correlations of features, and devise a sequential multi-scale block (SMB) to progressively explore the hierarchical information.
Experiment results show SHSR achieves superior quantitative performance and visual quality to state-of-the-art methods.
arXiv Detail & Related papers (2020-07-19T01:35:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.