Language Generation with Strictly Proper Scoring Rules
- URL: http://arxiv.org/abs/2405.18906v1
- Date: Wed, 29 May 2024 09:09:00 GMT
- Title: Language Generation with Strictly Proper Scoring Rules
- Authors: Chenze Shao, Fandong Meng, Yijin Liu, Jie Zhou,
- Abstract summary: We propose a strategy for adapting scoring rules to language generation, allowing for language modeling with any non-local scoring rules.
We train language generation models using two classic strictly proper scoring rules, the Brier score and the Spherical score, as alternatives to the logarithmic score.
- Score: 70.340673452404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language generation based on maximum likelihood estimation (MLE) has become the fundamental approach for text generation. Maximum likelihood estimation is typically performed by minimizing the log-likelihood loss, also known as the logarithmic score in statistical decision theory. The logarithmic score is strictly proper in the sense that it encourages honest forecasts, where the expected score is maximized only when the model reports true probabilities. Although many strictly proper scoring rules exist, the logarithmic score is the only local scoring rule among them that depends exclusively on the probability of the observed sample, making it capable of handling the exponentially large sample space of natural text. In this work, we propose a straightforward strategy for adapting scoring rules to language generation, allowing for language modeling with any non-local scoring rules. Leveraging this strategy, we train language generation models using two classic strictly proper scoring rules, the Brier score and the Spherical score, as alternatives to the logarithmic score. Experimental results indicate that simply substituting the loss function, without adjusting other hyperparameters, can yield substantial improvements in model's generation capabilities. Moreover, these improvements can scale up to large language models (LLMs) such as LLaMA-7B and LLaMA-13B. Source code: \url{https://github.com/shaochenze/ScoringRulesLM}.
Related papers
- Dirichlet-Based Prediction Calibration for Learning with Noisy Labels [40.78497779769083]
Learning with noisy labels can significantly hinder the generalization performance of deep neural networks (DNNs)
Existing approaches address this issue through loss correction or example selection methods.
We propose the textitDirichlet-based Prediction (DPC) method as a solution.
arXiv Detail & Related papers (2024-01-13T12:33:04Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
The standard paradigm of neural language generation adopts maximum likelihood estimation (MLE) as the optimizing method.
We develop practical bounds to apply it to language generation.
We introduce the TaiLr objective that balances the tradeoff of estimating TVD.
arXiv Detail & Related papers (2023-02-26T16:32:52Z) - A Natural Bias for Language Generation Models [31.44752136404971]
We show that we can endow standard neural language generation models with a separate module that reflects unigram frequency statistics as prior knowledge.
We use neural machine translation as a test bed for this simple technique and observe that it: (i) improves learning efficiency; (ii) achieves better overall performance; and perhaps most importantly: appears to disentangle strong frequency effects.
arXiv Detail & Related papers (2022-12-19T18:14:36Z) - Quark: Controllable Text Generation with Reinforced Unlearning [68.07749519374089]
Large-scale language models often learn behaviors that are misaligned with user expectations.
We introduce Quantized Reward Konditioning (Quark), an algorithm for optimizing a reward function that quantifies an (un)wanted property.
For unlearning toxicity, negative sentiment, and repetition, our experiments show that Quark outperforms both strong baselines and state-of-the-art reinforcement learning methods.
arXiv Detail & Related papers (2022-05-26T21:11:51Z) - Transcormer: Transformer for Sentence Scoring with Sliding Language
Modeling [95.9542389945259]
Sentence scoring aims at measuring the likelihood of a sentence and is widely used in many natural language processing scenarios.
We propose textitTranscormer -- a Transformer model with a novel textitsliding language modeling (SLM) for sentence scoring.
arXiv Detail & Related papers (2022-05-25T18:00:09Z) - Language Models in the Loop: Incorporating Prompting into Weak
Supervision [11.10422546502386]
We propose a new strategy for applying large pre-trained language models to novel tasks when labeled training data is limited.
Instead of applying the model in a typical zero-shot or few-shot fashion, we treat the model as the basis for labeling functions in a weak supervision framework.
arXiv Detail & Related papers (2022-05-04T20:42:40Z) - Cold-start Active Learning through Self-supervised Language Modeling [15.551710499866239]
Active learning aims to reduce annotation costs by choosing the most critical examples to label.
With BERT, we develop a simple strategy based on the masked language modeling loss.
Compared to other baselines, our approach reaches higher accuracy within less sampling iterations and time.
arXiv Detail & Related papers (2020-10-19T14:09:17Z) - On the Discrepancy between Density Estimation and Sequence Generation [92.70116082182076]
log-likelihood is highly correlated with BLEU when we consider models within the same family.
We observe no correlation between rankings of models across different families.
arXiv Detail & Related papers (2020-02-17T20:13:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.