論文の概要: Computing low-thrust transfers in the asteroid belt, a comparison between astrodynamical manipulations and a machine learning approach
- arxiv url: http://arxiv.org/abs/2405.18918v1
- Date: Wed, 29 May 2024 09:20:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 17:49:44.187042
- Title: Computing low-thrust transfers in the asteroid belt, a comparison between astrodynamical manipulations and a machine learning approach
- Title(参考訳): 小惑星帯における低推力移動の計算 : 天体力学操作と機械学習アプローチの比較
- Authors: Giacomo Acciarini, Laurent Beauregard, Dario Izzo,
- Abstract要約: 低推力軌道は、小惑星帯のミッションにおける科学的出力とコスト効率の最適化に重要な役割を果たしている。
本稿では,新しい解析近似を提案し,その精度と性能を機械学習手法と比較する。
我々は、時間と最適な制御問題を解くことによって発見された約300万の転送のデータセットを構築します。
- 参考スコア(独自算出の注目度): 4.868863044142366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-thrust trajectories play a crucial role in optimizing scientific output and cost efficiency in asteroid belt missions. Unlike high-thrust transfers, low-thrust trajectories require solving complex optimal control problems. This complexity grows exponentially with the number of asteroids visited due to orbital mechanics intricacies. In the literature, methods for approximating low-thrust transfers without full optimization have been proposed, including analytical and machine learning techniques. In this work, we propose new analytical approximations and compare their accuracy and performance to machine learning methods. While analytical approximations leverage orbit theory to estimate trajectory costs, machine learning employs a more black-box approach, utilizing neural networks to predict optimal transfers based on various attributes. We build a dataset of about 3 million transfers, found by solving the time and fuel optimal control problems, for different time of flights, which we also release open-source. Comparison between the two methods on this database reveals the superiority of machine learning, especially for longer transfers. Despite challenges such as multi revolution transfers, both approaches maintain accuracy within a few percent in the final mass errors, on a database of trajectories involving numerous asteroids. This work contributes to the efficient exploration of mission opportunities in the asteroid belt, providing insights into the strengths and limitations of different approximation strategies.
- Abstract(参考訳): 低推力軌道は、小惑星帯のミッションにおける科学的出力とコスト効率の最適化に重要な役割を果たしている。
高スラスト移動とは異なり、低スラスト軌道は複雑な最適制御問題を解く必要がある。
この複雑さは、軌道力学の複雑さによって訪れた小惑星の数とともに指数関数的に増加する。
文献では、解析的および機械学習技術を含む、完全な最適化なしに低推力転送を近似する手法が提案されている。
本研究では,新しい解析近似を提案し,その精度と性能を機械学習手法と比較する。
解析的近似は軌道理論を利用して軌道のコストを推定するが、機械学習はよりブラックボックスなアプローチを採用し、ニューラルネットワークを利用して様々な属性に基づいて最適な移動を予測する。
私たちは、時間と燃料の最適制御問題を解決することで、約300万回の転送のデータセットを構築します。
このデータベース上の2つの手法の比較は、特に長い転送において、機械学習の優位性を明らかにしている。
多変量移動のような課題にもかかわらず、どちらのアプローチも、多くの小惑星を含む軌道のデータベース上で、最終的な質量誤差において数パーセント以内の精度を維持している。
この研究は、小惑星帯におけるミッション機会の効率的な探索に寄与し、様々な近似戦略の強さと限界についての洞察を提供する。
関連論文リスト
- Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy [75.15685966213832]
最適化トラジェクトリのリッチな方向構造をポイントワイズパラメータで解析する。
トレーニング中のスカラーバッチノルムパラメータは,ネットワーク全体のトレーニング性能と一致していることを示す。
論文 参考訳(メタデータ) (2024-03-12T07:32:47Z) - Comparing Active Learning Performance Driven by Gaussian Processes or
Bayesian Neural Networks for Constrained Trajectory Exploration [0.0]
現在、人間は科学的な目的を達成するためにロボットを駆動しているが、ロボットの位置によっては、情報交換と駆動コマンドがミッション遂行に不適切な遅延を引き起こす可能性がある。
科学的目的と探索戦略で符号化された自律ロボットは、通信遅延を発生させず、ミッションをより迅速に達成することができる。
能動学習アルゴリズムは知的探索の能力を提供するが、その基盤となるモデル構造は、環境の理解を正確に形成する際に、能動学習アルゴリズムの性能を変化させる。
論文 参考訳(メタデータ) (2023-09-28T02:45:14Z) - TransPath: Learning Heuristics For Grid-Based Pathfinding via
Transformers [64.88759709443819]
探索の効率を顕著に向上させると考えられる,インスタンス依存のプロキシを学習することを提案する。
私たちが最初に学ぶことを提案するプロキシは、補正係数、すなわち、インスタンスに依存しないコスト・ツー・ゴの見積もりと完璧な見積もりの比率である。
第2のプロキシはパス確率であり、グリッドセルが最も短いパスに横たわっている可能性を示している。
論文 参考訳(メタデータ) (2022-12-22T14:26:11Z) - Contrastive Trajectory Similarity Learning with Dual-Feature Attention [24.445998309807965]
トレイ類似度尺度は、トラジェクトリデータベースにおけるクエリ述語として機能する。
そこで本研究では,TrajCLという学習に基づくトラジェクトリモデリング手法を提案する。
TrajCLは、最先端の軌跡類似度測定よりも一貫して、はるかに正確で高速である。
論文 参考訳(メタデータ) (2022-10-11T05:25:14Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - DiffSkill: Skill Abstraction from Differentiable Physics for Deformable
Object Manipulations with Tools [96.38972082580294]
DiffSkillは、変形可能なオブジェクト操作タスクを解決するために、スキル抽象化に微分可能な物理シミュレータを使用する新しいフレームワークである。
特に、勾配に基づくシミュレーターから個々のツールを用いて、まず短距離のスキルを得る。
次に、RGBD画像を入力として取り込む実演軌跡から、ニューラルネットワークの抽象体を学習する。
論文 参考訳(メタデータ) (2022-03-31T17:59:38Z) - Asteroid Flyby Cycler Trajectory Design Using Deep Neural Networks [4.420321822469076]
本稿では,深部ニューラルネットワークによって構築された代理モデルを用いて,小惑星フライバイサイクル軌道を設計する新しい手法を提案する。
カルシュ・クーン・タッカー条件を満たす擬似小惑星を導入することにより,効率的なデータベース生成戦略を提案する。
論文 参考訳(メタデータ) (2021-11-23T13:31:05Z) - GalaxAI: Machine learning toolbox for interpretable analysis of
spacecraft telemetry data [48.42042893355919]
GalaxAIは、宇宙船のテレメトリデータを分析するための汎用的な機械学習ツールボックスである。
多変量時系列解析、分類、回帰、構造化出力予測に様々な機械学習アルゴリズムを使用している。
本稿では,2つの異なる宇宙船に関する2つのユースケースにおいて,GalaxAIの有用性と汎用性を示す。
論文 参考訳(メタデータ) (2021-08-03T10:45:20Z) - Active learning with RESSPECT: Resource allocation for extragalactic
astronomical transients [41.74772877196879]
RESSPECTプロジェクトは、Rubin Observatory Legacy Survey of Space and Timeのために最適化されたトレーニングサンプルを構築することを目的としている。
我々は,現実的なシミュレートされた天文学的データシナリオにおいて,能動的学習技術の堅牢性をテストする。
論文 参考訳(メタデータ) (2020-10-12T18:04:04Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
本稿では, 惑星間軌道のロバスト設計における強化学習の適用について検討する。
最先端アルゴリズムのオープンソース実装が採用されている。
その結果得られた誘導制御ネットワークは、堅牢な名目的軌道と関連する閉ループ誘導法の両方を提供する。
論文 参考訳(メタデータ) (2020-08-19T15:22:15Z) - Real-Time Optimal Guidance and Control for Interplanetary Transfers
Using Deep Networks [10.191757341020216]
最適な例の模倣学習は、ネットワークトレーニングパラダイムとして使用される。
G&CNETは、宇宙船の最適誘導制御システムの実装をオンボードでリアルタイムに行うのに適している。
論文 参考訳(メタデータ) (2020-02-20T23:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。