Evaluating the External and Parametric Knowledge Fusion of Large Language Models
- URL: http://arxiv.org/abs/2405.19010v1
- Date: Wed, 29 May 2024 11:48:27 GMT
- Title: Evaluating the External and Parametric Knowledge Fusion of Large Language Models
- Authors: Hao Zhang, Yuyang Zhang, Xiaoguang Li, Wenxuan Shi, Haonan Xu, Huanshuo Liu, Yasheng Wang, Lifeng Shang, Qun Liu, Yong Liu, Ruiming Tang,
- Abstract summary: We develop a systematic pipeline for data construction and knowledge infusion to simulate knowledge fusion scenarios.
Our investigation reveals that enhancing parametric knowledge within LLMs can significantly bolster their capability for knowledge integration.
Our findings aim to steer future explorations on harmonizing external and parametric knowledge within LLMs.
- Score: 72.40026897037814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integrating external knowledge into large language models (LLMs) presents a promising solution to overcome the limitations imposed by their antiquated and static parametric memory. Prior studies, however, have tended to over-reliance on external knowledge, underestimating the valuable contributions of an LLMs' intrinsic parametric knowledge. The efficacy of LLMs in blending external and parametric knowledge remains largely unexplored, especially in cases where external knowledge is incomplete and necessitates supplementation by their parametric knowledge. We propose to deconstruct knowledge fusion into four distinct scenarios, offering the first thorough investigation of LLM behavior across each. We develop a systematic pipeline for data construction and knowledge infusion to simulate these fusion scenarios, facilitating a series of controlled experiments. Our investigation reveals that enhancing parametric knowledge within LLMs can significantly bolster their capability for knowledge integration. Nonetheless, we identify persistent challenges in memorizing and eliciting parametric knowledge, and determining parametric knowledge boundaries. Our findings aim to steer future explorations on harmonizing external and parametric knowledge within LLMs.
Related papers
- Reliability Across Parametric and External Knowledge: Understanding Knowledge Handling in LLMs [11.860265967829884]
Large Language Models (LLMs) enhance their problem-solving capability by leveraging both parametric and external knowledge.
We introduce a framework for analyzing knowledge-handling based on two key dimensions: the presence of parametric knowledge and the informativeness of external knowledge.
We demonstrate that training on data constructed based on the knowledge-handling scenarios improves LLMs' reliability in integrating and utilizing knowledge.
arXiv Detail & Related papers (2025-02-19T11:49:23Z) - KnowPath: Knowledge-enhanced Reasoning via LLM-generated Inference Paths over Knowledge Graphs [35.63483147113076]
Introducing external knowledge, such as knowledge graph, can enhance the LLMs' ability to provide factual answers.
KnowPath is a knowledge-enhanced large model framework driven by the collaboration of internal and external knowledge.
It relies on the internal knowledge of the LLM to guide the exploration of interpretable directed subgraphs in external knowledge graphs.
arXiv Detail & Related papers (2025-02-17T17:02:01Z) - InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration [58.61492157691623]
Methods for integrating knowledge have been developed, which augment LLMs with domain-specific knowledge graphs through external modules.
Our research focuses on a novel problem: efficiently integrating unknown knowledge into LLMs without unnecessary overlap of known knowledge.
A risk of introducing new knowledge is the potential forgetting of existing knowledge.
arXiv Detail & Related papers (2024-02-18T03:36:26Z) - RECALL: A Benchmark for LLMs Robustness against External Counterfactual
Knowledge [69.79676144482792]
This study aims to evaluate the ability of LLMs to distinguish reliable information from external knowledge.
Our benchmark consists of two tasks, Question Answering and Text Generation, and for each task, we provide models with a context containing counterfactual information.
arXiv Detail & Related papers (2023-11-14T13:24:19Z) - Augmenting LLMs with Knowledge: A survey on hallucination prevention [0.0]
This survey delves into the realm of language models (LMs) augmented with the ability to tap into external knowledge sources.
While adhering to the standard objective of predicting missing tokens, these augmented LMs leverage diverse, possibly non-parametric external modules.
arXiv Detail & Related papers (2023-09-28T14:09:58Z) - "Merge Conflicts!" Exploring the Impacts of External Distractors to
Parametric Knowledge Graphs [15.660128743249611]
Large language models (LLMs) acquire extensive knowledge during pre-training, known as their parametric knowledge.
LLMs inevitably require external knowledge during their interactions with users.
This raises a crucial question: How will LLMs respond when external knowledge interferes with their parametric knowledge?
arXiv Detail & Related papers (2023-09-15T17:47:59Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
We show that large language models (LLMs) possess unwavering confidence in their knowledge and cannot handle the conflict between internal and external knowledge well.
Retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries.
We propose a simple method to dynamically utilize supporting documents with our judgement strategy.
arXiv Detail & Related papers (2023-07-20T16:46:10Z) - Thrust: Adaptively Propels Large Language Models with External Knowledge [58.72867916604562]
Large-scale pre-trained language models (PTLMs) are shown to encode rich knowledge in their model parameters.
The inherent knowledge in PTLMs can be opaque or static, making external knowledge necessary.
We propose the instance-level adaptive propulsion of external knowledge (IAPEK), where we only conduct the retrieval when necessary.
arXiv Detail & Related papers (2023-07-19T20:16:46Z) - Knowledge Rumination for Pre-trained Language Models [77.55888291165462]
We propose a new paradigm dubbed Knowledge Rumination to help the pre-trained language model utilize related latent knowledge without retrieving it from the external corpus.
We apply the proposed knowledge rumination to various language models, including RoBERTa, DeBERTa, and GPT-3.
arXiv Detail & Related papers (2023-05-15T15:47:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.