Convex neural network synthesis for robustness in the 1-norm
- URL: http://arxiv.org/abs/2405.19029v1
- Date: Wed, 29 May 2024 12:17:09 GMT
- Title: Convex neural network synthesis for robustness in the 1-norm
- Authors: Ross Drummond, Chris Guiver, Matthew C. Turner,
- Abstract summary: This paper proposes a method to generate an approximation of a neural network which is certifiably more robust.
An application to robustifying model predictive control is used to demonstrate the results.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With neural networks being used to control safety-critical systems, they increasingly have to be both accurate (in the sense of matching inputs to outputs) and robust. However, these two properties are often at odds with each other and a trade-off has to be navigated. To address this issue, this paper proposes a method to generate an approximation of a neural network which is certifiably more robust. Crucially, the method is fully convex and posed as a semi-definite programme. An application to robustifying model predictive control is used to demonstrate the results. The aim of this work is to introduce a method to navigate the neural network robustness/accuracy trade-off.
Related papers
- Residual Random Neural Networks [0.0]
Single-layer feedforward neural network with random weights is a recurring motif in the neural networks literature.
We show that one can obtain good classification results even if the number of hidden neurons has the same order of magnitude as the dimensionality of the data samples.
arXiv Detail & Related papers (2024-10-25T22:00:11Z) - Approximation with Random Shallow ReLU Networks with Applications to Model Reference Adaptive Control [0.0]
We show that ReLU networks with randomly generated weights and biases achieve $L_infty$ error of $O(m-1/2)$ with high probability.
We show how the result can be used to get approximations of required accuracy in a model reference adaptive control application.
arXiv Detail & Related papers (2024-03-25T19:39:17Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Convex Dual Theory Analysis of Two-Layer Convolutional Neural Networks
with Soft-Thresholding [15.514556290714053]
Soft-thresholding has been widely used in neural networks.
A new way to convexify soft neuraling networks is presented.
This work provides a new way to convexify soft neuraling networks.
arXiv Detail & Related papers (2023-04-14T07:04:07Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - CNN-based Prediction of Network Robustness With Missing Edges [0.9239657838690227]
We investigate the performance of CNN-based approaches for connectivity and controllability prediction, when partial network information is missing.
A threshold is explored that if a total amount of more than 7.29% information is lost, the performance of CNN-based prediction will be significantly degenerated.
arXiv Detail & Related papers (2022-08-25T03:36:20Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
This paper proposes a theoretical and computational framework for training and robustness verification of implicit neural networks.
We introduce a related embedded network and show that the embedded network can be used to provide an $ell_infty$-norm box over-approximation of the reachable sets of the original network.
We apply our algorithms to train implicit neural networks on the MNIST dataset and compare the robustness of our models with the models trained via existing approaches in the literature.
arXiv Detail & Related papers (2022-08-08T03:13:24Z) - Generating Probabilistic Safety Guarantees for Neural Network
Controllers [30.34898838361206]
We use a dynamics model to determine the output properties that must hold for a neural network controller to operate safely.
We develop an adaptive verification approach to efficiently generate an overapproximation of the neural network policy.
We show that our method is able to generate meaningful probabilistic safety guarantees for aircraft collision avoidance neural networks.
arXiv Detail & Related papers (2021-03-01T18:48:21Z) - Learning Neural Network Subspaces [74.44457651546728]
Recent observations have advanced our understanding of the neural network optimization landscape.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
arXiv Detail & Related papers (2021-02-20T23:26:58Z) - Do Wider Neural Networks Really Help Adversarial Robustness? [92.8311752980399]
We show that the model robustness is closely related to the tradeoff between natural accuracy and perturbation stability.
We propose a new Width Adjusted Regularization (WAR) method that adaptively enlarges $lambda$ on wide models.
arXiv Detail & Related papers (2020-10-03T04:46:17Z) - Hidden Cost of Randomized Smoothing [72.93630656906599]
In this paper, we point out the side effects of current randomized smoothing.
Specifically, we articulate and prove two major points: 1) the decision boundaries of smoothed classifiers will shrink, resulting in disparity in class-wise accuracy; 2) applying noise augmentation in the training process does not necessarily resolve the shrinking issue due to the inconsistent learning objectives.
arXiv Detail & Related papers (2020-03-02T23:37:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.