論文の概要: SynerGraph: An Integrated Graph Convolution Network for Multimodal Recommendation
- arxiv url: http://arxiv.org/abs/2405.19031v1
- Date: Wed, 29 May 2024 12:18:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 23:33:22.264085
- Title: SynerGraph: An Integrated Graph Convolution Network for Multimodal Recommendation
- Title(参考訳): SynerGraph:マルチモーダルレコメンデーションのための統合グラフ畳み込みネットワーク
- Authors: Mert Burabak, Tevfik Aytekin,
- Abstract要約: 本稿では,マルチモーダルデータの統合と浄化に焦点をあてた,マルチモーダルレコメンデーションシステムに対する新しいアプローチを提案する。
各種データからノイズを除去するフィルタを開発し,提案手法の信頼性を高めた。
我々は、各データセットに対するトップKスパリフィケーションの影響を調査し、不適合と過適合のバランスをとる最適な値を発見した。
- 参考スコア(独自算出の注目度): 1.3812010983144802
- License:
- Abstract: This article presents a novel approach to multimodal recommendation systems, focusing on integrating and purifying multimodal data. Our methodology starts by developing a filter to remove noise from various types of data, making the recommendations more reliable. We studied the impact of top-K sparsification on different datasets, finding optimal values that strike a balance between underfitting and overfitting concerns. The study emphasizes the significant role of textual information compared to visual data in providing a deep understanding of items. We conducted sensitivity analyses to understand how different modalities and the use of purifier circle loss affect the efficiency of the model. The findings indicate that systems that incorporate multiple modalities perform better than those relying on just one modality. Our approach highlights the importance of modality purifiers in filtering out irrelevant data, ensuring that user preferences remain relevant. Models without modality purifiers showed reduced performance, emphasizing the need for effective integration of pre-extracted features. The proposed model, which includes an novel self supervised auxiliary task, shows promise in accurately capturing user preferences. The main goal of the fusion technique is to enhance the modeling of user preferences by combining knowledge with item information, utilizing sophisticated language models. Extensive experiments show that our model produces better results than the existing state-of-the-art multimodal recommendation systems.
- Abstract(参考訳): 本稿では,マルチモーダルデータの統合と浄化に焦点をあてた,マルチモーダルレコメンデーションシステムに対する新しいアプローチを提案する。
提案手法は,様々な種類のデータからノイズを除去するフィルタを開発し,レコメンデーションをより信頼性の高いものにすることから始まる。
我々は、各データセットに対するトップKスパリフィケーションの影響を調査し、不適合と過適合のバランスをとる最適な値を発見した。
この研究は、アイテムを深く理解する上で、視覚データと比較して、テキスト情報の重要性を強調している。
感度解析を行い,各モードの違いとパーファイア円損失の利用がモデルの効率に与える影響について検討した。
その結果,複数のモダリティを組み込んだシステムは,一つのモダリティに頼っているシステムよりも優れていた。
当社のアプローチでは,無関係なデータをフィルタリングする上で,モダリティ浄化の重要性を強調し,ユーザの嗜好が引き続き適切であることを保証している。
モーダルパーファイアのないモデルは性能を低下させ、事前抽出された特徴の効果的な統合の必要性を強調した。
提案手法は,新規な自己監督型補助タスクを含むモデルであり,ユーザの好みを正確に把握する上での有望性を示す。
融合技術の主な目的は、洗練された言語モデルを利用して、知識とアイテム情報を組み合わせることで、ユーザの好みのモデリングを強化することである。
大規模な実験により、我々のモデルは既存の最先端マルチモーダルレコメンデーションシステムよりも優れた結果が得られることが示された。
関連論文リスト
- Multimodal Information Bottleneck for Deep Reinforcement Learning with Multiple Sensors [10.454194186065195]
強化学習はロボット制御タスクにおいて有望な成果を上げてきたが、情報の有効活用に苦慮している。
最近の研究は、複数の感覚入力から関節表現を抽出するために、再構成や相互情報に基づく補助的損失を構築している。
生のマルチモーダル観測について,学習した共同表現で情報を圧縮することが有用である。
論文 参考訳(メタデータ) (2024-10-23T04:32:37Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
一般的に使われているユーザトークンモデルは、より複雑なモデルよりも一貫して優れています。
以上の結果から,コーパス統計とアノテータモデリング性能の関係が明らかになった。
論文 参考訳(メタデータ) (2024-04-02T22:27:24Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Debiasing Multimodal Models via Causal Information Minimization [65.23982806840182]
我々は、マルチモーダルデータのための因果グラフにおいて、共同創設者から生じるバイアスを研究する。
ロバストな予測機能は、モデルがアウト・オブ・ディストリビューションデータに一般化するのに役立つ多様な情報を含んでいる。
これらの特徴を共同設立者表現として使用し、因果理論によって動機づけられた手法を用いてモデルからバイアスを取り除く。
論文 参考訳(メタデータ) (2023-11-28T16:46:14Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - Infinite Recommendation Networks: A Data-Centric Approach [8.044430277912936]
Neural Tangent Kernelを活用して、無限大のニューラルネットワークをトレーニングし、無限大のボトルネック層を持つオートエンコーダであるinfty$-AEを考案します。
また、小型で高忠実なデータ要約を合成するためのDistill-CFを開発した。
我々は、最初のデータセットサイズの0.1%に満たない完全なデータセット上で、infty$-AEのパフォーマンスの96-105%を観察した。
論文 参考訳(メタデータ) (2022-06-03T00:34:13Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
ディープラーニングは、リコメンダシステムの結果を改善するために、正確な協調フィルタリングモデルを提供する。
提案するモデルは, 深層建築の潜伏空間において, 変分概念を注入性に適用する。
提案手法は, 入射雑音効果を超える変動エンリッチメントのシナリオにおいて, 提案手法の優位性を示す。
論文 参考訳(メタデータ) (2021-07-27T08:59:39Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。