論文の概要: Robust Entropy Search for Safe Efficient Bayesian Optimization
- arxiv url: http://arxiv.org/abs/2405.19059v2
- Date: Fri, 31 May 2024 07:45:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 18:54:00.291423
- Title: Robust Entropy Search for Safe Efficient Bayesian Optimization
- Title(参考訳): 安全なベイズ最適化のためのロバストエントロピー探索
- Authors: Dorina Weichert, Alexander Kister, Sebastian Houben, Patrick Link, Gunar Ernis,
- Abstract要約: 我々は、ロバスト・エントロピー・サーチ(RES)と呼ばれる効率的な情報ベース獲得機能を開発する。
RESは、堅牢で最先端のアルゴリズムよりも確実に最適である。
- 参考スコア(独自算出の注目度): 40.56709991743249
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The practical use of Bayesian Optimization (BO) in engineering applications imposes special requirements: high sampling efficiency on the one hand and finding a robust solution on the other hand. We address the case of adversarial robustness, where all parameters are controllable during the optimization process, but a subset of them is uncontrollable or even adversely perturbed at the time of application. To this end, we develop an efficient information-based acquisition function that we call Robust Entropy Search (RES). We empirically demonstrate its benefits in experiments on synthetic and real-life data. The results showthat RES reliably finds robust optima, outperforming state-of-the-art algorithms.
- Abstract(参考訳): エンジニアリング応用におけるベイズ最適化(BO)の実践的利用は、一方のサンプリング効率が高く、他方の堅牢な解を見つけるという特別な要件を課している。
最適化プロセスでは,全てのパラメータが制御可能であるが,そのサブセットは適用時に制御できないか,あるいは逆に乱れてしまうような,対向的ロバスト性の問題に対処する。
そこで我々は,ロバスト・エントロピー・サーチ(RES)と呼ばれる,効率的な情報ベース獲得機能を開発した。
我々は、合成データと実生活データの実験において、その利点を実証的に実証した。
その結果、RESは頑健で、最先端のアルゴリズムより優れていることがわかった。
関連論文リスト
- Enhancing Stochastic Optimization for Statistical Efficiency Using ROOT-SGD with Diminishing Stepsize [13.365997574848759]
本稿では,最適化と統計効率のギャップを埋める手法であるtextsfROOT-SGDを再検討する。
提案手法は, 念入りに設計したステップサイズ戦略を統合することにより, テキストfROOT-SGDの性能と信頼性を向上させる。
論文 参考訳(メタデータ) (2024-07-15T17:54:03Z) - Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation [55.75188191403343]
各ユーザが事前に定義した機能であるユーティリティを導入し,BOのコストと性能のトレードオフについて述べる。
このアルゴリズムをLCデータセット上で検証した結果,従来のマルチファイルBOや転送BOベースラインよりも優れていた。
論文 参考訳(メタデータ) (2024-05-28T07:38:39Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
本研究では,非測定抽象特性に関する専門家の嗜好を代理モデルに組み込むための,人間とAIの協調型ベイズフレームワークを提案する。
優先判断において、誤った/誤解を招く専門家バイアスを処理できる効率的な戦略を提供する。
論文 参考訳(メタデータ) (2024-02-27T09:23:13Z) - Efficient and Robust Bayesian Selection of Hyperparameters in Dimension
Reduction for Visualization [0.0]
本稿では,次元減少(DR)アルゴリズムにおけるハイパーパラメータ選択のための,効率的かつ堅牢な自動チューニングフレームワークを提案する。
提案手法により,多目的トレードオフを用いた効率的なハイパーパラメータ選択が可能となり,データ駆動分析が可能となった。
我々は,複数の品質指標を用いて,様々な合成および実世界のデータセットを用いて評価を行った。
論文 参考訳(メタデータ) (2023-06-01T05:36:22Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Bayesian Optimization for auto-tuning GPU kernels [0.0]
GPUカーネルの最適パラメータ設定を見つけることは、たとえ自動化されても、大規模な検索スペースにとって簡単な作業ではない。
拡張性を改善した新しい文脈探索機能と,情報機能選択機構を併用した新しい獲得機能を導入する。
論文 参考訳(メタデータ) (2021-11-26T11:26:26Z) - Fighting the curse of dimensionality: A machine learning approach to
finding global optima [77.34726150561087]
本稿では,構造最適化問題におけるグローバル最適化の方法を示す。
特定のコスト関数を利用することで、最適化手順が確立された場合と比較して、グローバルをベストに得るか、最悪の場合、優れた結果を得るかのどちらかを得る。
論文 参考訳(メタデータ) (2021-10-28T09:50:29Z) - LinEasyBO: Scalable Bayesian Optimization Approach for Analog Circuit
Synthesis via One-Dimensional Subspaces [11.64233949999656]
アナログ回路合成のための1次元部分空間による高速でロバストなベイズ最適化手法を提案する。
提案アルゴリズムは,バッチサイズが15のとき,LP-EIおよびREMBOpBOと比較して最大9倍,38倍の最適化手順を高速化できる。
論文 参考訳(メタデータ) (2021-09-01T21:25:25Z) - Bilevel Optimization for Differentially Private Optimization in Energy
Systems [53.806512366696275]
本稿では,入力に敏感な制約付き最適化問題に対して,差分プライバシーを適用する方法について検討する。
本稿は, 自然仮定の下では, 大規模非線形最適化問題に対して, 双レベルモデルを効率的に解けることを示す。
論文 参考訳(メタデータ) (2020-01-26T20:15:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。