論文の概要: Efficient and Robust Bayesian Selection of Hyperparameters in Dimension
Reduction for Visualization
- arxiv url: http://arxiv.org/abs/2306.00357v1
- Date: Thu, 1 Jun 2023 05:36:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 18:10:57.585057
- Title: Efficient and Robust Bayesian Selection of Hyperparameters in Dimension
Reduction for Visualization
- Title(参考訳): 可視化のための次元削減のための高パラメータの効率的かつロバストなベイズ選択
- Authors: Yin-Ting Liao, Hengrui Luo, Anna Ma
- Abstract要約: 本稿では,次元減少(DR)アルゴリズムにおけるハイパーパラメータ選択のための,効率的かつ堅牢な自動チューニングフレームワークを提案する。
提案手法により,多目的トレードオフを用いた効率的なハイパーパラメータ選択が可能となり,データ駆動分析が可能となった。
我々は,複数の品質指標を用いて,様々な合成および実世界のデータセットを用いて評価を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an efficient and robust auto-tuning framework for hyperparameter
selection in dimension reduction (DR) algorithms, focusing on large-scale
datasets and arbitrary performance metrics. By leveraging Bayesian optimization
(BO) with a surrogate model, our approach enables efficient hyperparameter
selection with multi-objective trade-offs and allows us to perform data-driven
sensitivity analysis. By incorporating normalization and subsampling, the
proposed framework demonstrates versatility and efficiency, as shown in
applications to visualization techniques such as t-SNE and UMAP. We evaluate
our results on various synthetic and real-world datasets using multiple quality
metrics, providing a robust and efficient solution for hyperparameter selection
in DR algorithms.
- Abstract(参考訳): 本稿では,大規模データセットと任意のパフォーマンス指標に着目した,次元縮小(DR)アルゴリズムにおけるハイパーパラメータ選択のための効率的で堅牢な自動チューニングフレームワークを提案する。
ベイズ最適化(bo)をサーロゲートモデルで活用することにより,マルチ目的トレードオフを用いた効率的なハイパーパラメータ選択を可能にし,データ駆動型感度解析を可能にする。
正規化とサブサンプリングを取り入れることで,t-SNE や UMAP などの可視化技術に適用できるような,汎用性と効率性を示す。
DRアルゴリズムにおける高パラメータ選択のための頑健かつ効率的なソリューションを提供するため,複数の品質指標を用いた各種合成および実世界のデータセットについて評価を行った。
関連論文リスト
- Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
人間からのフィードバックからの強化学習(RLHF)は、AIシステムと人間の価値を合わせるための一般的なアプローチである。
本稿では,分散ロバスト最適化(DRO)に基づく適応的優先損失を提案する。
提案手法は多用途であり,様々な選好最適化フレームワークに容易に適用可能である。
論文 参考訳(メタデータ) (2024-06-04T20:33:22Z) - Robust Entropy Search for Safe Efficient Bayesian Optimization [40.56709991743249]
我々は、ロバスト・エントロピー・サーチ(RES)と呼ばれる効率的な情報ベース獲得機能を開発する。
RESは、堅牢で最先端のアルゴリズムよりも確実に最適である。
論文 参考訳(メタデータ) (2024-05-29T13:00:10Z) - Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation [55.75188191403343]
各ユーザが事前に定義した機能であるユーティリティを導入し,BOのコストと性能のトレードオフについて述べる。
このアルゴリズムをLCデータセット上で検証した結果,従来のマルチファイルBOや転送BOベースラインよりも優れていた。
論文 参考訳(メタデータ) (2024-05-28T07:38:39Z) - Trajectory-Based Multi-Objective Hyperparameter Optimization for Model Retraining [8.598456741786801]
本稿では,新しいトラジェクトリベース多目的ベイズ最適化アルゴリズムを提案する。
我々のアルゴリズムは、より優れたトレードオフとチューニング効率の両面において、最先端のマルチオブジェクトよりも優れています。
論文 参考訳(メタデータ) (2024-05-24T07:43:45Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Scalable Bayesian optimization with high-dimensional outputs using
randomized prior networks [3.0468934705223774]
本稿では,確率化された先行するニューラルネットワークの自己ストラップ型アンサンブルに基づくBOとシーケンシャル意思決定のためのディープラーニングフレームワークを提案する。
提案手法は,高次元ベクトル空間や無限次元関数空間の値を取る場合においても,設計変数と関心量の関数的関係を近似することができることを示す。
提案手法をBOの最先端手法に対して検証し,高次元出力の課題に対して優れた性能を示す。
論文 参考訳(メタデータ) (2023-02-14T18:55:21Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
ハイパーパラメータチューニングのための勾配に基づくサブセット選択フレームワークを提案する。
ハイパーパラメータチューニングに勾配ベースのデータサブセットを用いることで、3$times$-30$times$のターンアラウンド時間とスピードアップが大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-03-15T19:25:01Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
本稿では,予測効率とトレーニング効率の両面において,モデルを協調最適化するための統一ベイズ最適化フレームワークを提案する。
レコメンデーションタスクのためのモデル選択の実験は、この方法で選択されたモデルがモデルのトレーニング効率を大幅に改善することを示している。
論文 参考訳(メタデータ) (2020-08-02T02:56:30Z) - An Asymptotically Optimal Multi-Armed Bandit Algorithm and
Hyperparameter Optimization [48.5614138038673]
本稿では,高パラメータ探索評価のシナリオにおいて,SS (Sub-Sampling) と呼ばれる効率的で堅牢な帯域幅に基づくアルゴリズムを提案する。
また,BOSSと呼ばれる新しいパラメータ最適化アルゴリズムを開発した。
実験的な研究は、SSの理論的議論を検証し、多くのアプリケーションにおけるBOSSの優れた性能を実証する。
論文 参考訳(メタデータ) (2020-07-11T03:15:21Z) - Hyperparameter Selection for Subsampling Bootstraps [0.0]
BLBのようなサブサンプリング手法は、大量のデータに対する推定器の品質を評価する強力なツールとして機能する。
サブサンプリング法の性能は,チューニングパラメータの選択によって大きく影響を受ける。
本研究では,サブサンプリング手法のチューニングパラメータの選択に利用できるハイパーパラメータ選択手法を開発した。
シミュレーション研究と実データ解析の両方が,本手法の優位性を証明している。
論文 参考訳(メタデータ) (2020-06-02T17:10:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。