Cephalo: Multi-Modal Vision-Language Models for Bio-Inspired Materials Analysis and Design
- URL: http://arxiv.org/abs/2405.19076v3
- Date: Mon, 15 Jul 2024 12:36:42 GMT
- Title: Cephalo: Multi-Modal Vision-Language Models for Bio-Inspired Materials Analysis and Design
- Authors: Markus J. Buehler,
- Abstract summary: Cephalo is a series of vision large language models (V-LLMs) designed for materials science applications.
It is trained on integrated image and text data from thousands of scientific papers.
Generative applications include bio-inspired designs, including pollen-inspired architected materials.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present Cephalo, a series of multimodal vision large language models (V-LLMs) designed for materials science applications, integrating visual and linguistic data for enhanced understanding. A key innovation of Cephalo is its advanced dataset generation method. Cephalo is trained on integrated image and text data from thousands of scientific papers and science-focused Wikipedia data demonstrates can interpret complex visual scenes, generate precise language descriptions, and answer queries about images effectively. The combination of a vision encoder with an autoregressive transformer supports multimodal natural language understanding, which can be coupled with other generative methods to create an image-to-text-to-3D pipeline. To develop more capable models from smaller ones, we report both mixture-of-expert methods and model merging. We examine the models in diverse use cases that incorporate biological materials, fracture and engineering analysis, protein biophysics, and bio-inspired design based on insect behavior. Generative applications include bio-inspired designs, including pollen-inspired architected materials, as well as the synthesis of bio-inspired material microstructures from a photograph of a solar eclipse. Additional model fine-tuning with a series of molecular dynamics results demonstrate Cephalo's enhanced capabilities to accurately predict statistical features of stress and atomic energy distributions, as well as crack dynamics and damage in materials.
Related papers
- Leveraging Biomolecule and Natural Language through Multi-Modal
Learning: A Survey [75.47055414002571]
The integration of biomolecular modeling with natural language (BL) has emerged as a promising interdisciplinary area at the intersection of artificial intelligence, chemistry and biology.
We provide an analysis of recent advancements achieved through cross modeling of biomolecules and natural language.
arXiv Detail & Related papers (2024-03-03T14:59:47Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - BioinspiredLLM: Conversational Large Language Model for the Mechanics of
Biological and Bio-inspired Materials [0.0]
Open-source autoregressive transformer large language model (LLM), BioinspiredLLM, is reported.
The model was finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials.
arXiv Detail & Related papers (2023-09-15T22:12:44Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - GIT-Mol: A Multi-modal Large Language Model for Molecular Science with
Graph, Image, and Text [25.979382232281786]
We introduce GIT-Mol, a multi-modal large language model that integrates the Graph, Image, and Text information.
We achieve a 5%-10% accuracy increase in properties prediction and a 20.2% boost in molecule generation validity.
arXiv Detail & Related papers (2023-08-14T03:12:29Z) - MeLM, a generative pretrained language modeling framework that solves
forward and inverse mechanics problems [0.0]
We report a flexible multi-modal mechanics language model, MeLM, applied to solve various nonlinear forward and inverse problems.
The framework is applied to various examples including bio-inspired hierarchical honeycomb design and carbon nanotube mechanics.
arXiv Detail & Related papers (2023-06-30T10:28:20Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - RoentGen: Vision-Language Foundation Model for Chest X-ray Generation [7.618389245539657]
We develop a strategy to overcome the large natural-medical distributional shift by adapting a pre-trained latent diffusion model on a corpus of publicly available chest x-rays.
We investigate the model's ability to generate high-fidelity, diverse synthetic CXR conditioned on text prompts.
We present evidence that the resulting model (RoentGen) is able to create visually convincing, diverse synthetic CXR images.
arXiv Detail & Related papers (2022-11-23T06:58:09Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
We show that simple convolutional networks trained on localization classification can learn protein representations that encapsulate diverse functional information.
We also propose a robust evaluation strategy to assess quality of protein representations across different scales of biological function.
arXiv Detail & Related papers (2022-05-24T00:00:07Z) - Multimodal Graph-based Transformer Framework for Biomedical Relation
Extraction [21.858440542249934]
We introduce a novel framework that enables the model to learn multi-omnics biological information about entities (proteins) with the help of additional multi-modal cues like molecular structure.
We evaluate our proposed method on ProteinProtein Interaction task from the biomedical corpus.
arXiv Detail & Related papers (2021-07-01T16:37:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.