Promoting Two-sided Fairness in Dynamic Vehicle Routing Problem
- URL: http://arxiv.org/abs/2405.19184v1
- Date: Wed, 29 May 2024 15:24:28 GMT
- Title: Promoting Two-sided Fairness in Dynamic Vehicle Routing Problem
- Authors: Yufan Kang, Rongsheng Zhang, Wei Shao, Flora D. Salim, Jeffrey Chan,
- Abstract summary: DVRPs involve two stakeholders: service providers that deliver services to customers and customers who raise requests from different locations.
We propose a novel framework, a Two-sided Fairness-aware Genetic Algorithm (named 2FairGA), which expands the genetic algorithm from the original objective solely focusing on utility to multi-objectives that incorporate two-sided fairness.
- Score: 21.148097893483406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic Vehicle Routing Problem (DVRP), is an extension of the classic Vehicle Routing Problem (VRP), which is a fundamental problem in logistics and transportation. Typically, DVRPs involve two stakeholders: service providers that deliver services to customers and customers who raise requests from different locations. Many real-world applications can be formulated as DVRP such as ridesharing and non-compliance capture. Apart from original objectives like optimising total utility or efficiency, DVRP should also consider fairness for all parties. Unfairness can induce service providers and customers to give up on the systems, leading to negative financial and social impacts. However, most existing DVRP-related applications focus on improving fairness from a single side, and there have been few works considering two-sided fairness and utility optimisation concurrently. To this end, we propose a novel framework, a Two-sided Fairness-aware Genetic Algorithm (named 2FairGA), which expands the genetic algorithm from the original objective solely focusing on utility to multi-objectives that incorporate two-sided fairness. Subsequently, the impact of injecting two fairness definitions into the utility-focused model and the correlation between any pair of the three objectives are explored. Extensive experiments demonstrate the superiority of our proposed framework compared to the state-of-the-art.
Related papers
- A-FedPD: Aligning Dual-Drift is All Federated Primal-Dual Learning Needs [57.35402286842029]
We propose a novel Aligned Dual Dual (A-FedPD) method, which constructs virtual dual align global and local clients.
We provide a comprehensive analysis of the A-FedPD method's efficiency for those protracted unicipated security consensus.
arXiv Detail & Related papers (2024-09-27T17:00:32Z) - Multi-attribute Auction-based Resource Allocation for Twins Migration in Vehicular Metaverses: A GPT-based DRL Approach [85.65587846913793]
Vehicular Metaverses are developed to enhance the modern automotive industry with an immersive and safe experience among connected vehicles.
We propose an attribute-aware auction-based mechanism to optimize resource allocation during VTs migration.
We train a DDA auctioneer using a generative pre-trained transformer (GPT)-based deep reinforcement learning (DRL) algorithm to adjust the auction clocks efficiently.
arXiv Detail & Related papers (2024-06-08T09:41:38Z) - Fair Allocation in Dynamic Mechanism Design [57.66441610380448]
We consider a problem where an auctioneer sells an indivisible good to groups of buyers in every round, for a total of $T$ rounds.
The auctioneer aims to maximize their discounted overall revenue while adhering to a fairness constraint that guarantees a minimum average allocation for each group.
arXiv Detail & Related papers (2024-05-31T19:26:05Z) - Individually Rational Collaborative Vehicle Routing through
Give-And-Take Exchanges [4.266376725904727]
We introduce a novel multi-agent approach to this problem, focusing on the Collaborative Vehicle Routing Problem (CVRP) through the lens of individual rationality.
By facilitating cooperation among competing logistics agents through a Give-and-Take approach, we show that it is possible to reduce travel distance and increase operational efficiency system-wide.
arXiv Detail & Related papers (2023-08-31T07:18:37Z) - Interpolating Item and User Fairness in Multi-Sided Recommendations [13.635310806431198]
We introduce a novel fair recommendation framework, Problem (FAIR)
We propose a low-regret algorithm FORM that concurrently performs real-time learning and fair recommendations, two tasks that are often at odds.
We demonstrate the efficacy of our framework and method in maintaining platform revenue while ensuring desired levels of fairness for both items and users.
arXiv Detail & Related papers (2023-06-12T15:00:58Z) - Using Simple Incentives to Improve Two-Sided Fairness in Ridesharing
Systems [27.34946988130242]
We propose a simple incentive-based fairness scheme that can be implemented online as a part of this ILP formulation.
We show how these fairness incentives can be formulated for two distinct use cases for passenger groups and driver fairness.
arXiv Detail & Related papers (2023-03-25T02:24:27Z) - Conditional Expectation based Value Decomposition for Scalable On-Demand
Ride Pooling [11.988825533369683]
Traditional ride pooling approaches do not consider the impact of current matches on future value for vehicles/drivers.
We show that our new approach, Conditional Expectation based Value Decomposition (CEVD) outperforms NeurADP by up to 9.76% in terms of overall requests served.
arXiv Detail & Related papers (2021-12-01T15:53:16Z) - Efficiency, Fairness, and Stability in Non-Commercial Peer-to-Peer
Ridesharing [84.47891614815325]
This paper focuses on the core problem in P2P ridesharing: the matching of riders and drivers.
We introduce novel notions of fairness and stability in P2P ridesharing.
Results suggest that fair and stable solutions can be obtained in reasonable computational times.
arXiv Detail & Related papers (2021-10-04T02:14:49Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day.
We propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks.
arXiv Detail & Related papers (2021-05-18T19:22:24Z) - Towards Fair Knowledge Transfer for Imbalanced Domain Adaptation [61.317911756566126]
We propose a Towards Fair Knowledge Transfer framework to handle the fairness challenge in imbalanced cross-domain learning.
Specifically, a novel cross-domain mixup generation is exploited to augment the minority source set with target information to enhance fairness.
Our model significantly improves over 20% on two benchmarks in terms of the overall accuracy.
arXiv Detail & Related papers (2020-10-23T06:29:09Z) - A Distributed Model-Free Ride-Sharing Approach for Joint Matching,
Pricing, and Dispatching using Deep Reinforcement Learning [32.0512015286512]
We present a dynamic, demand aware, and pricing-based vehicle-passenger matching and route planning framework.
Our framework is validated using the New York City Taxi dataset.
Experimental results show the effectiveness of our approach in real-time and large scale settings.
arXiv Detail & Related papers (2020-10-05T03:13:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.