Multi-attribute Auction-based Resource Allocation for Twins Migration in Vehicular Metaverses: A GPT-based DRL Approach
- URL: http://arxiv.org/abs/2406.05418v1
- Date: Sat, 8 Jun 2024 09:41:38 GMT
- Title: Multi-attribute Auction-based Resource Allocation for Twins Migration in Vehicular Metaverses: A GPT-based DRL Approach
- Authors: Yongju Tong, Junlong Chen, Minrui Xu, Jiawen Kang, Zehui Xiong, Dusit Niyato, Chau Yuen, Zhu Han,
- Abstract summary: Vehicular Metaverses are developed to enhance the modern automotive industry with an immersive and safe experience among connected vehicles.
We propose an attribute-aware auction-based mechanism to optimize resource allocation during VTs migration.
We train a DDA auctioneer using a generative pre-trained transformer (GPT)-based deep reinforcement learning (DRL) algorithm to adjust the auction clocks efficiently.
- Score: 85.65587846913793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicular Metaverses are developed to enhance the modern automotive industry with an immersive and safe experience among connected vehicles and roadside infrastructures, e.g., RoadSide Units (RSUs). For seamless synchronization with virtual spaces, Vehicle Twins (VTs) are constructed as digital representations of physical entities. However, resource-intensive VTs updating and high mobility of vehicles require intensive computation, communication, and storage resources, especially for their migration among RSUs with limited coverages. To address these issues, we propose an attribute-aware auction-based mechanism to optimize resource allocation during VTs migration by considering both price and non-monetary attributes, e.g., location and reputation. In this mechanism, we propose a two-stage matching for vehicular users and Metaverse service providers in multi-attribute resource markets. First, the resource attributes matching algorithm obtains the resource attributes perfect matching, namely, buyers and sellers can participate in a double Dutch auction (DDA). Then, we train a DDA auctioneer using a generative pre-trained transformer (GPT)-based deep reinforcement learning (DRL) algorithm to adjust the auction clocks efficiently during the auction process. We compare the performance of social welfare and auction information exchange costs with state-of-the-art baselines under different settings. Simulation results show that our proposed GPT-based DRL auction schemes have better performance than others.
Related papers
- Diffusion-based Auction Mechanism for Efficient Resource Management in 6G-enabled Vehicular Metaverses [57.010829427434516]
In 6G-enable Vehicular Metaverses, vehicles are represented by Vehicle Twins (VTs), which serve as digital replicas of physical vehicles.
VT tasks are resource-intensive and need to be offloaded to ground Base Stations (BSs) for fast processing.
We propose a learning-based Modified Second-Bid (MSB) auction mechanism to optimize resource allocation between ground BSs and UAVs.
arXiv Detail & Related papers (2024-11-01T04:34:54Z) - Hybrid-Generative Diffusion Models for Attack-Oriented Twin Migration in Vehicular Metaverses [58.264499654343226]
Vehicle Twins (VTs) are digital twins that provide immersive virtual services for Vehicular Metaverse Users (VMUs)
High mobility of vehicles, uneven deployment of edge servers, and potential security threats pose challenges to achieving efficient and reliable VT migrations.
We propose a secure and reliable VT migration framework in vehicular metaverses.
arXiv Detail & Related papers (2024-07-05T11:11:33Z) - Generative AI-empowered Effective Physical-Virtual Synchronization in
the Vehicular Metaverse [129.8037449161817]
We propose a generative AI-empowered physical-virtual synchronization framework for the vehicular Metaverse.
In virtual-to-physical synchronization, MARs customize diverse and personal AR recommendations via generative AI models based on user preferences.
arXiv Detail & Related papers (2023-01-18T16:25:42Z) - Edge Computing for Semantic Communication Enabled Metaverse: An
Incentive Mechanism Design [72.27143788103245]
SemCom and edge computing are disruptive solutions to address emerging requirements of huge data communication, bandwidth efficiency and low latency data processing in Metaverse.
Deep learning (DL)-based auction has recently proposed as an incentive mechanism that maximizes the revenue while holding important economic properties.
We present the design of the DL-based auction for edge resource allocation in SemCom-enabled Metaverse.
arXiv Detail & Related papers (2022-12-13T10:29:41Z) - VFed-SSD: Towards Practical Vertical Federated Advertising [53.08038962443853]
We propose a semi-supervised split distillation framework VFed-SSD to alleviate the two limitations.
Specifically, we develop a self-supervised task MatchedPair Detection (MPD) to exploit the vertically partitioned unlabeled data.
Our framework provides an efficient federation-enhanced solution for real-time display advertising with minimal deploying cost and significant performance lift.
arXiv Detail & Related papers (2022-05-31T17:45:30Z) - Neural Auction: End-to-End Learning of Auction Mechanisms for E-Commerce
Advertising [42.7415188090209]
We develop deep models to efficiently extract contexts from auctions, providing rich features for auction design.
DNAs have been successfully deployed in the e-commerce advertising system at Taobao.
arXiv Detail & Related papers (2021-06-07T13:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.