MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification
- URL: http://arxiv.org/abs/2405.19186v1
- Date: Wed, 29 May 2024 15:28:42 GMT
- Title: MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification
- Authors: Laura Fieback, Jakob Spiegelberg, Hanno Gottschalk,
- Abstract summary: We introduce MetaToken, a lightweight binary classifier to detect hallucinations on the token-level at negligible cost.
Based on a statistical analysis, we reveal key factors of hallucinations in LVLMs which have been overseen in previous works.
We evaluate our method on four state-of-the-art LVLMs demonstrating the effectiveness of our approach.
- Score: 1.3654846342364308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Vision Language Models (LVLMs) have shown remarkable capabilities in multimodal tasks like visual question answering or image captioning. However, inconsistencies between the visual information and the generated text, a phenomenon referred to as hallucinations, remain an unsolved problem with regard to the trustworthiness of LVLMs. To address this problem, recent works proposed to incorporate computationally costly Large (Vision) Language Models in order to detect hallucinations on a sentence- or subsentence-level. In this work, we introduce MetaToken, a lightweight binary classifier to detect hallucinations on the token-level at negligible cost. Based on a statistical analysis, we reveal key factors of hallucinations in LVLMs which have been overseen in previous works. MetaToken can be applied to any open-source LVLM without any knowledge about ground truth data providing a reliable detection of hallucinations. We evaluate our method on four state-of-the-art LVLMs demonstrating the effectiveness of our approach.
Related papers
- A Survey of Hallucination in Large Visual Language Models [48.794850395309076]
The existence of hallucinations has limited the potential and practical effectiveness of LVLM in various fields.
The structure of LVLMs and main causes of hallucination generation are introduced.
The available hallucination evaluation benchmarks for LVLMs are presented.
arXiv Detail & Related papers (2024-10-20T10:58:58Z) - From Pixels to Tokens: Revisiting Object Hallucinations in Large Vision-Language Models [15.401221354325672]
Hallucinations in large vision models (LVLMs) are a significant challenge, i.e., generating objects that are not presented in the visual input.
Recent studies often attribute hallucinations to a lack of understanding of visual input, yet ignore a more fundamental issue: the model's inability to extract or decouple visual features.
In this paper, we revisit the hallucinations in LVLMs from an architectural perspective, investigating whether the primary cause lies in the visual encoder (feature extraction) or the modal alignment module (feature decoupling)
arXiv Detail & Related papers (2024-10-09T11:46:32Z) - Investigating and Mitigating the Multimodal Hallucination Snowballing in Large Vision-Language Models [33.19894606649144]
Though advanced in understanding visual information with human languages, Large Vision-Language Models (LVLMs) still suffer from multimodal hallucinations.
We propose a framework called MMHalball to evaluate LVLMs' behaviors when encountering generated hallucinations.
We propose a training-free method called Residual Visual Decoding, where we revise the output distribution of LVLMs with the one derived from the residual visual input.
arXiv Detail & Related papers (2024-06-30T03:04:11Z) - Does Object Grounding Really Reduce Hallucination of Large Vision-Language Models? [53.89380284760555]
Large vision-language models (LVLMs) produce captions that mention concepts that cannot be found in the image.
These hallucinations erode the trustworthiness of LVLMs and are arguably among the main obstacles to their ubiquitous adoption.
Recent work suggests that addition of grounding objectives -- those that explicitly align image regions or objects to text spans -- reduces the amount of LVLM hallucination.
arXiv Detail & Related papers (2024-06-20T16:56:11Z) - Hallucination Augmented Contrastive Learning for Multimodal Large
Language Model [53.65682783591723]
Multi-modal large language models (MLLMs) have been shown to efficiently integrate natural language with visual information to handle multi-modal tasks.
However, MLLMs still face a fundamental limitation of hallucinations, where they tend to generate erroneous or fabricated information.
In this paper, we address hallucinations in MLLMs from a novel perspective of representation learning.
arXiv Detail & Related papers (2023-12-12T04:05:15Z) - Analyzing and Mitigating Object Hallucination in Large Vision-Language Models [110.12460299261531]
Large vision-language models (LVLMs) have shown remarkable abilities in understanding visual information with human languages.
LVLMs still suffer from object hallucination, which is the problem of generating descriptions that include objects that do not actually exist in the images.
We propose a powerful algorithm, LVLM Hallucination Revisor (LURE), to rectify object hallucination in LVLMs by reconstructing less hallucinatory descriptions.
arXiv Detail & Related papers (2023-10-01T18:10:53Z) - Evaluation and Analysis of Hallucination in Large Vision-Language Models [49.19829480199372]
Large Vision-Language Models (LVLMs) have recently achieved remarkable success.
LVLMs are still plagued by the hallucination problem.
Hallucination refers to the information of LVLMs' responses that does not exist in the visual input.
arXiv Detail & Related papers (2023-08-29T08:51:24Z) - Evaluating Object Hallucination in Large Vision-Language Models [122.40337582958453]
This work presents the first systematic study on object hallucination of large vision-language models (LVLMs)
We find that LVLMs tend to generate objects that are inconsistent with the target images in the descriptions.
We propose a polling-based query method called POPE to evaluate the object hallucination.
arXiv Detail & Related papers (2023-05-17T16:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.