論文の概要: Domain adaptation in small-scale and heterogeneous biological datasets
- arxiv url: http://arxiv.org/abs/2405.19221v1
- Date: Wed, 29 May 2024 16:01:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 16:21:56.728725
- Title: Domain adaptation in small-scale and heterogeneous biological datasets
- Title(参考訳): 小規模及び異種生物データセットにおけるドメイン適応
- Authors: Seyedmehdi Orouji, Martin C. Liu, Tal Korem, Megan A. K. Peters,
- Abstract要約: 生物研究におけるドメイン適応のメリットと課題について論じる。
計算生物学者のツールキットにドメイン適応技術を導入することについて論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning techniques are steadily becoming more important in modern biology, and are used to build predictive models, discover patterns, and investigate biological problems. However, models trained on one dataset are often not generalizable to other datasets from different cohorts or laboratories, due to differences in the statistical properties of these datasets. These could stem from technical differences, such as the measurement technique used, or from relevant biological differences between the populations studied. Domain adaptation, a type of transfer learning, can alleviate this problem by aligning the statistical distributions of features and samples among different datasets so that similar models can be applied across them. However, a majority of state-of-the-art domain adaptation methods are designed to work with large-scale data, mostly text and images, while biological datasets often suffer from small sample sizes, and possess complexities such as heterogeneity of the feature space. This Review aims to synthetically discuss domain adaptation methods in the context of small-scale and highly heterogeneous biological data. We describe the benefits and challenges of domain adaptation in biological research and critically discuss some of its objectives, strengths, and weaknesses through key representative methodologies. We argue for the incorporation of domain adaptation techniques to the computational biologist's toolkit, with further development of customized approaches.
- Abstract(参考訳): 機械学習技術は現代生物学において徐々に重要になってきており、予測モデルの構築、パターンの発見、生物学的問題の調査に利用されている。
しかしながら、あるデータセットでトレーニングされたモデルは、これらのデータセットの統計的性質の違いのために、異なるコホートや研究所の他のデータセットに一般化できないことが多い。
これらは、使用される測定技術や、研究対象の個体間の生物学的な差異など、技術的な違いに起因する可能性がある。
転送学習の一種であるドメイン適応は、異なるデータセット間で特徴とサンプルの統計分布を整列することで、同様のモデルを適用できるようにすることで、この問題を軽減することができる。
しかし、最先端の領域適応法の大部分は、テキストや画像など大規模なデータを扱うように設計されている一方、生物学的データセットは小さなサンプルサイズに悩まされ、特徴空間の不均一性のような複雑さを持つことが多い。
本論は, 小規模・高度に異質な生物学的データの文脈において, ドメイン適応法を総合的に議論することを目的とする。
本稿では,生物研究におけるドメイン適応のメリットと課題について述べるとともに,その目的,強み,弱点について,主要な代表的方法論を通じて批判的に論じる。
計算生物学者ツールキットへのドメイン適応技術の導入と、カスタマイズされたアプローチのさらなる発展を論じる。
関連論文リスト
- Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
我々は,マルチモーダルデータに対するフレキシブルな識別条件の開発を目指している。
我々は、各潜伏成分の識別可能性を保証するとともに、サブスペース識別結果を事前の作業から拡張する。
我々の重要な理論的要素は、異なるモーダル間の因果関係の構造的空間性である。
論文 参考訳(メタデータ) (2024-11-10T16:40:27Z) - Simplicity within biological complexity [0.0]
文献を調査し、マルチスケール分子ネットワークデータの埋め込みのための包括的フレームワークの開発について論じる。
ネットワーク埋め込み手法はノードを低次元空間の点にマッピングすることにより、学習空間の近接性はネットワークのトポロジ-関数関係を反映する。
本稿では,モデルから効率的かつスケーラブルなソフトウェア実装に至るまで,マルチオミックネットワークデータのための汎用的な包括的埋め込みフレームワークを開発することを提案する。
論文 参考訳(メタデータ) (2024-05-15T13:32:45Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Finding Interpretable Class-Specific Patterns through Efficient Neural
Search [43.454121220860564]
本稿では、データから微分パターンを抽出する、本質的に解釈可能なバイナリニューラルネットワークアーキテクチャDNAPSを提案する。
DiffNapsは何十万もの機能にスケーラブルで、ノイズに強い。
3つの生物学的応用を含む人工的および実世界のデータについて、DiffNapsは競合と異なり、常に正確で簡潔で解釈可能なクラス記述を生成する。
論文 参考訳(メタデータ) (2023-12-07T14:09:18Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Reducing Intraspecies and Interspecies Covariate Shift in Traumatic
Brain Injury EEG of Humans and Mice Using Transfer Euclidean Alignment [4.264615907591813]
被験者間の高いばらつきは、現実世界の分類タスクのための機械学習モデルをデプロイすることに関して、大きな課題となる。
そのような場合、特定のデータセットで例外的なパフォーマンスを示す機械学習モデルは、同じタスクに対して異なるデータセットに適用した場合、必ずしも同様の習熟度を示すとは限らない。
本稿では,人間の生体医学的データの堅牢性に対処し,深層学習モデルの訓練を行うトランスファーユークリッドアライメントについて紹介する。
論文 参考訳(メタデータ) (2023-10-03T19:48:02Z) - Conditionally Invariant Representation Learning for Disentangling
Cellular Heterogeneity [25.488181126364186]
本稿では,不必要な変数や乱れに条件付き不変な表現を学習するために,ドメインの可変性を活用する新しい手法を提案する。
単細胞ゲノム学におけるデータ統合など,生物の課題に対して本手法を適用した。
具体的には、提案手法は、対象のタスクと無関係なデータバイアスや興味の因果的説明から生物学的信号を解き放つのに役立つ。
論文 参考訳(メタデータ) (2023-07-02T12:52:41Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Data-Driven Logistic Regression Ensembles With Applications in Genomics [0.0]
本稿では,正規化とアンサンブルのアイデアを組み合わせた高次元二項分類問題に対する新しいアプローチを提案する。
がん,多発性硬化症,乾皮症などの共通疾患を含むいくつかの医学的データセットを用いて,バイオマーカーの予測精度と同定の点で,本手法の優れた性能を実証した。
論文 参考訳(メタデータ) (2021-02-17T05:57:26Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。