論文の概要: Optimizing Foundation Model Inference on a Many-tiny-core Open-source RISC-V Platform
- arxiv url: http://arxiv.org/abs/2405.19284v1
- Date: Wed, 29 May 2024 17:16:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 16:02:26.477029
- Title: Optimizing Foundation Model Inference on a Many-tiny-core Open-source RISC-V Platform
- Title(参考訳): オープンソースRISC-Vプラットフォーム上でのファンデーションモデル推論の最適化
- Authors: Viviane Potocnik, Luca Colagrande, Tim Fischer, Luca Bertaccini, Daniele Jahier Pagliari, Alessio Burrello, Luca Benini,
- Abstract要約: 本稿では,オープンソースのマルチティニーコアRISC-Vプラットフォーム上で,トランスフォーマーモデルの最初のエンドツーエンド推論結果を示す。
エンコーダのみのモデルでは、最も最適化された実装とベースラインバージョンの間の最大12.8倍のスピードアップを示す。
デコーダのみのトポロジでは、非自己回帰(NAR)モードで16.1倍、オート回帰(AR)モードで最大35.6倍のスピードアップを達成する。
- 参考スコア(独自算出の注目度): 13.326025546527784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer-based foundation models have become crucial for various domains, most notably natural language processing (NLP) or computer vision (CV). These models are predominantly deployed on high-performance GPUs or hardwired accelerators with highly customized, proprietary instruction sets. Until now, limited attention has been given to RISC-V-based general-purpose platforms. In our work, we present the first end-to-end inference results of transformer models on an open-source many-tiny-core RISC-V platform implementing distributed Softmax primitives and leveraging ISA extensions for SIMD floating-point operand streaming and instruction repetition, as well as specialized DMA engines to minimize costly main memory accesses and to tolerate their latency. We focus on two foundational transformer topologies, encoder-only and decoder-only models. For encoder-only models, we demonstrate a speedup of up to 12.8x between the most optimized implementation and the baseline version. We reach over 79% FPU utilization and 294 GFLOPS/W, outperforming State-of-the-Art (SoA) accelerators by more than 2x utilizing the HW platform while achieving comparable throughput per computational unit. For decoder-only topologies, we achieve 16.1x speedup in the Non-Autoregressive (NAR) mode and up to 35.6x speedup in the Autoregressive (AR) mode compared to the baseline implementation. Compared to the best SoA dedicated accelerator, we achieve 2.04x higher FPU utilization.
- Abstract(参考訳): トランスフォーマーベースの基礎モデルは、自然言語処理(NLP)やコンピュータビジョン(CV)など、様々な領域において重要になっている。
これらのモデルは、主に、高度にカスタマイズされたプロプライエタリな命令セットを備えた高性能GPUまたはハードワイヤ型アクセラレータにデプロイされる。
これまでRISC-Vベースの汎用プラットフォームには限定的な注意が向けられていた。
本研究では,分散Softmaxプリミティブを実装し,SIMD浮動小数点演算子ストリーミングと命令繰り返しのためのISA拡張を利用するオープンソースのマルチチップRISC-Vプラットフォーム上でのトランスフォーマーモデルの最初のエンドツーエンド推論結果と,コストのかかるメインメモリアクセスを最小化し,そのレイテンシを許容するDMAエンジンについて述べる。
我々は、エンコーダのみのモデルとデコーダのみのモデルという、2つの基礎的なトランスフォーマートポロジに焦点を当てる。
エンコーダのみのモデルでは、最も最適化された実装とベースラインバージョンの間の最大12.8倍のスピードアップを示す。
我々は79%のFPU利用率と294のGFLOPS/Wに到達し、計算単位当たりのスループットを達成しつつ、HWプラットフォームを利用した2倍以上の精度でステート・オブ・ザ・アーツ(SoA)アクセラレーターを達成した。
デコーダのみのトポロジでは,非自己回帰(NAR)モードで16.1倍,オート回帰(AR)モードで35.6倍の高速化を実現している。
最高のSoA専用加速器と比較して、FPUの利用率は2.04倍に向上した。
関連論文リスト
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
分散トレーニングは、システム設計と効率に関する重要な課題に直面します。
大規模深層ニューラルネットワーク(DNN)のトレーニング用に設計・実装された分散トレーニングシステムFusionLLMを提案する。
本システムと手法は,収束性を確保しつつ,ベースライン法と比較して1.45~9.39倍の高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-16T16:13:19Z) - ProTEA: Programmable Transformer Encoder Acceleration on FPGA [0.0]
トランスフォーマーニューラルネットワーク(TNN)は、自然言語処理(NLP)、機械翻訳、コンピュータビジョン(CV)など、様々な用途で広く利用されている。
TNNの人気にもかかわらず、これら2つの重要なブロックをターゲットにしたハードウェアアクセラレータは限られている。
本稿では,最先端の変圧器エンコーダの高密度計算に適したプログラム実行アクセラレータである textitProTEA を紹介する。
論文 参考訳(メタデータ) (2024-09-21T01:44:13Z) - Quasar-ViT: Hardware-Oriented Quantization-Aware Architecture Search for Vision Transformers [56.37495946212932]
視覚変換器(ViT)は、畳み込みニューラルネットワーク(CNN)と比較して、コンピュータビジョンタスクにおいて優れた精度を示す。
ハードウェア指向の量子化対応アーキテクチャ検索フレームワークであるQuasar-ViTを提案する。
論文 参考訳(メタデータ) (2024-07-25T16:35:46Z) - Inference Optimization of Foundation Models on AI Accelerators [68.24450520773688]
トランスフォーマーアーキテクチャを備えた大規模言語モデル(LLM)を含む強力な基礎モデルは、ジェネレーティブAIの新たな時代を支えている。
モデルパラメータの数が数十億に達すると、実際のシナリオにおける推論コストと高いレイテンシーが排除される。
このチュートリアルでは、AIアクセラレータを用いた補完推論最適化テクニックに関する包括的な議論を行っている。
論文 参考訳(メタデータ) (2024-07-12T09:24:34Z) - FPGA-QHAR: Throughput-Optimized for Quantized Human Action Recognition
on The Edge [0.6254873489691849]
本稿では,8ビット量子化された2ストリームSimpleNet-PyTorch CNNアーキテクチャに基づく,エンドツーエンドHAR拡張型HW/SWアクセラレータの共設計を提案する。
私たちの開発では、部分的にストリーミングデータフローアーキテクチャを使用して、ネットワーク設計やリソース利用のトレードオフよりも高いスループットを実現しています。
提案手法は,ZCU104上の187MHzで約24FPSのリアルタイム推論スループットを用いて,約81%の予測精度を達成した。
論文 参考訳(メタデータ) (2023-11-04T10:38:21Z) - REED: Chiplet-Based Accelerator for Fully Homomorphic Encryption [4.713756093611972]
本稿では,従来のモノリシック設計の限界を克服する,マルチチップベースのFHEアクセラレータREEDについて紹介する。
その結果、REED 2.5Dマイクロプロセッサはチップ面積96.7 mm$2$、平均電力49.4Wを7nm技術で消費していることがわかった。
論文 参考訳(メタデータ) (2023-08-05T14:04:39Z) - Edge-MoE: Memory-Efficient Multi-Task Vision Transformer Architecture
with Task-level Sparsity via Mixture-of-Experts [60.1586169973792]
M$3$ViTは、Mix-of-experts (MoE)を導入した最新のマルチタスクViTモデルである。
MoEは精度の向上と80%以上の削減計算を実現しているが、FPGAに効率的なデプロイを行う上での課題は残されている。
Edge-MoEと呼ばれる私たちの研究は、アーキテクチャの革新の集合を伴って、マルチタスクのViTのための最初のエンドツーエンドFPGAアクセラレータを導入するという課題を解決します。
論文 参考訳(メタデータ) (2023-05-30T02:24:03Z) - An Algorithm-Hardware Co-Optimized Framework for Accelerating N:M Sparse
Transformers [11.811907838840712]
一般のN:M空間パターンを利用して, フレキシブルかつ効率的にトランスフォーマーを高速化するアルゴリズム・ハードウェア協調最適化フレームワークを提案する。
我々は、N:Mスパーストランスをデプロイする際の大幅な高速化を実現するために、フレキシブルで効率的なハードウェアアーキテクチャ、すなわちSTAを提案する。
実験の結果, 他の方法と比較して, IDPを用いて生成したN:Mスパース変圧器は, トレーニング効率の高い精度で平均6.7%向上することがわかった。
論文 参考訳(メタデータ) (2022-08-12T04:51:49Z) - Accelerating Deep Learning Model Inference on Arm CPUs with Ultra-Low
Bit Quantization and Runtime [57.5143536744084]
ディープラーニングモデルの高性能化は、高い計算、ストレージ、電力要求を犠牲にしている。
我々はDeplite Neutrinoを導入し、DepliteはArmベースのプラットフォームに超低ビット量子化モデルを展開する。
論文 参考訳(メタデータ) (2022-07-18T15:05:17Z) - Bilaterally Slimmable Transformer for Elastic and Efficient Visual
Question Answering [75.86788916930377]
左右にスリム化可能なトランスフォーマー(BST)は任意のトランスフォーマーベースのVQAモデルに統合される。
1つのスリム化MCAN-BSTサブモデルは、VQA-v2で同等の精度を達成する。
最も小さなMCAN-BSTサブモデルは、推論中に9Mパラメータと0.16GのFLOPを持つ。
論文 参考訳(メタデータ) (2022-03-24T02:26:04Z) - A Full-stack Accelerator Search Technique for Vision Applications [11.932331630567512]
本稿では,幅広い最適化環境を定義するハードウェアアクセラレーター検索フレームワークを提案する。
FASTは、どんな数やタイプのディープラーニングのワークロードでも使用できる。
単一のワークロードに最適化されたFASTによって生成された設計は、ベストケースではPerf/TDPを6倍改善することができる。
限定的なワークロードサブセットでは、FASTはPerf/TDP 2.85xを平均で改善し、ワークロードセットに最適化された単一の設計に対して2.35xに削減する。
論文 参考訳(メタデータ) (2021-05-26T21:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。