Reasoning3D -- Grounding and Reasoning in 3D: Fine-Grained Zero-Shot Open-Vocabulary 3D Reasoning Part Segmentation via Large Vision-Language Models
- URL: http://arxiv.org/abs/2405.19326v1
- Date: Wed, 29 May 2024 17:56:07 GMT
- Title: Reasoning3D -- Grounding and Reasoning in 3D: Fine-Grained Zero-Shot Open-Vocabulary 3D Reasoning Part Segmentation via Large Vision-Language Models
- Authors: Tianrun Chen, Chunan Yu, Jing Li, Jianqi Zhang, Lanyun Zhu, Deyi Ji, Yong Zhang, Ying Zang, Zejian Li, Lingyun Sun,
- Abstract summary: We introduce a new task: Zero-Shot 3D Reasoning for parts searching and localization for objects.
We design a simple baseline method, Reasoning3D, with the capability to understand and execute complex commands.
We show that Reasoning3D can effectively localize and highlight parts of 3D objects based on implicit textual queries.
- Score: 20.277479473218513
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we introduce a new task: Zero-Shot 3D Reasoning Segmentation for parts searching and localization for objects, which is a new paradigm to 3D segmentation that transcends limitations for previous category-specific 3D semantic segmentation, 3D instance segmentation, and open-vocabulary 3D segmentation. We design a simple baseline method, Reasoning3D, with the capability to understand and execute complex commands for (fine-grained) segmenting specific parts for 3D meshes with contextual awareness and reasoned answers for interactive segmentation. Specifically, Reasoning3D leverages an off-the-shelf pre-trained 2D segmentation network, powered by Large Language Models (LLMs), to interpret user input queries in a zero-shot manner. Previous research have shown that extensive pre-training endows foundation models with prior world knowledge, enabling them to comprehend complex commands, a capability we can harness to "segment anything" in 3D with limited 3D datasets (source efficient). Experimentation reveals that our approach is generalizable and can effectively localize and highlight parts of 3D objects (in 3D mesh) based on implicit textual queries, including these articulated 3d objects and real-world scanned data. Our method can also generate natural language explanations corresponding to these 3D models and the decomposition. Moreover, our training-free approach allows rapid deployment and serves as a viable universal baseline for future research of part-level 3d (semantic) object understanding in various fields including robotics, object manipulation, part assembly, autonomous driving applications, augment reality and virtual reality (AR/VR), and medical applications. The code, the model weight, the deployment guide, and the evaluation protocol are: http://tianrun-chen.github.io/Reason3D/
Related papers
- 3D Part Segmentation via Geometric Aggregation of 2D Visual Features [57.20161517451834]
Supervised 3D part segmentation models are tailored for a fixed set of objects and parts, limiting their transferability to open-set, real-world scenarios.
Recent works have explored vision-language models (VLMs) as a promising alternative, using multi-view rendering and textual prompting to identify object parts.
To address these limitations, we propose COPS, a COmprehensive model for Parts that blends semantics extracted from visual concepts and 3D geometry to effectively identify object parts.
arXiv Detail & Related papers (2024-12-05T15:27:58Z) - Multimodal 3D Reasoning Segmentation with Complex Scenes [92.92045550692765]
We bridge the research gaps by proposing a 3D reasoning segmentation task for multiple objects in scenes.
The task allows producing 3D segmentation masks and detailed textual explanations as enriched by 3D spatial relations among objects.
In addition, we design MORE3D, a simple yet effective method that enables multi-object 3D reasoning segmentation with user questions and textual outputs.
arXiv Detail & Related papers (2024-11-21T08:22:45Z) - SAMPart3D: Segment Any Part in 3D Objects [23.97392239910013]
3D part segmentation is a crucial and challenging task in 3D perception, playing a vital role in applications such as robotics, 3D generation, and 3D editing.
Recent methods harness the powerful Vision Language Models (VLMs) for 2D-to-3D knowledge distillation, achieving zero-shot 3D part segmentation.
In this work, we introduce SAMPart3D, a scalable zero-shot 3D part segmentation framework that segments any 3D object into semantic parts at multiple granularities.
arXiv Detail & Related papers (2024-11-11T17:59:10Z) - Search3D: Hierarchical Open-Vocabulary 3D Segmentation [78.47704793095669]
We introduce Search3D, an approach to construct hierarchical open-vocabulary 3D scene representations.
Unlike prior methods, Search3D shifts towards a more flexible open-vocabulary 3D search paradigm.
For systematic evaluation, we contribute a scene-scale open-vocabulary 3D part segmentation benchmark based on MultiScan.
arXiv Detail & Related papers (2024-09-27T03:44:07Z) - 3x2: 3D Object Part Segmentation by 2D Semantic Correspondences [33.99493183183571]
We propose to leverage a few annotated 3D shapes or richly annotated 2D datasets to perform 3D object part segmentation.
We present our novel approach, termed 3-By-2 that achieves SOTA performance on different benchmarks with various granularity levels.
arXiv Detail & Related papers (2024-07-12T19:08:00Z) - Transcrib3D: 3D Referring Expression Resolution through Large Language Models [28.121606686759225]
We introduce Transcrib3D, an approach that brings together 3D detection methods and the emergent reasoning capabilities of large language models.
Transcrib3D achieves state-of-the-art results on 3D reference resolution benchmarks.
We show that our method enables a real robot to perform pick-and-place tasks given queries that contain challenging referring expressions.
arXiv Detail & Related papers (2024-04-30T02:48:20Z) - PARIS3D: Reasoning-based 3D Part Segmentation Using Large Multimodal Model [19.333506797686695]
We introduce a novel segmentation task known as reasoning part segmentation for 3D objects.
We output a segmentation mask based on complex and implicit textual queries about specific parts of a 3D object.
We propose a model that is capable of segmenting parts of 3D objects based on implicit textual queries and generating natural language explanations.
arXiv Detail & Related papers (2024-04-04T23:38:45Z) - SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
We introduce a novel 3D pre-training framework for robotics named SUGAR.
SUGAR captures semantic, geometric and affordance properties of objects through 3D point clouds.
We show that SUGAR's 3D representation outperforms state-of-the-art 2D and 3D representations.
arXiv Detail & Related papers (2024-04-01T21:23:03Z) - Chat-Scene: Bridging 3D Scene and Large Language Models with Object Identifiers [65.51132104404051]
We introduce the use of object identifiers and object-centric representations to interact with scenes at the object level.
Our model significantly outperforms existing methods on benchmarks including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.
arXiv Detail & Related papers (2023-12-13T14:27:45Z) - 3D Concept Grounding on Neural Fields [99.33215488324238]
Existing visual reasoning approaches typically utilize supervised methods to extract 2D segmentation masks on which concepts are grounded.
Humans are capable of grounding concepts on the underlying 3D representation of images.
We propose to leverage the continuous, differentiable nature of neural fields to segment and learn concepts.
arXiv Detail & Related papers (2022-07-13T17:59:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.