論文の概要: Subject-Adaptive Transfer Learning Using Resting State EEG Signals for Cross-Subject EEG Motor Imagery Classification
- arxiv url: http://arxiv.org/abs/2405.19346v2
- Date: Tue, 9 Jul 2024 14:30:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 23:11:39.360829
- Title: Subject-Adaptive Transfer Learning Using Resting State EEG Signals for Cross-Subject EEG Motor Imagery Classification
- Title(参考訳): 静止状態脳波信号を用いたクロスオブジェクト脳波モータ画像分類のための主観適応移動学習
- Authors: Sion An, Myeongkyun Kang, Soopil Kim, Philip Chikontwe, Li Shen, Sang Hyun Park,
- Abstract要約: 本稿では、RS EEG信号を用いて、未知の対象データにモデルを適用する新しい主題適応型トランスファー学習戦略を提案する。
提案手法は,3つの公開ベンチマーク上での最先端の精度を実現し,クロスオブジェクトEEG MI分類における本手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 10.487161620381785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalography (EEG) motor imagery (MI) classification is a fundamental, yet challenging task due to the variation of signals between individuals i.e., inter-subject variability. Previous approaches try to mitigate this using task-specific (TS) EEG signals from the target subject in training. However, recording TS EEG signals requires time and limits its applicability in various fields. In contrast, resting state (RS) EEG signals are a viable alternative due to ease of acquisition with rich subject information. In this paper, we propose a novel subject-adaptive transfer learning strategy that utilizes RS EEG signals to adapt models on unseen subject data. Specifically, we disentangle extracted features into task- and subject-dependent features and use them to calibrate RS EEG signals for obtaining task information while preserving subject characteristics. The calibrated signals are then used to adapt the model to the target subject, enabling the model to simulate processing TS EEG signals of the target subject. The proposed method achieves state-of-the-art accuracy on three public benchmarks, demonstrating the effectiveness of our method in cross-subject EEG MI classification. Our findings highlight the potential of leveraging RS EEG signals to advance practical brain-computer interface systems. The code is available at https://github.com/SionAn/MICCAI2024-ResTL.
- Abstract(参考訳): 脳波 (EEG) 運動画像分類 (MI) は、個人間の信号のばらつき、すなわち物体間の変動により、基本的な課題であるが難しい課題である。
以前のアプローチでは、トレーニング中の対象者からのタスク固有(TS)脳波信号を使用してこれを緩和しようとしていた。
しかし、TS EEG信号を記録するには、様々な分野での時間と適用性を制限する必要がある。
対照的に、安静状態(RS)脳波信号は、リッチな主題情報による取得が容易であるため、有効な代替手段である。
本稿では、RS EEG信号を用いて、未知の対象データにモデルを適用する新しい対象適応型トランスファー学習戦略を提案する。
具体的には、抽出した特徴をタスク依存的特徴と主観依存的特徴に分解し、RS脳波信号を校正し、課題情報を取得しながら対象特性を保存する。
次に、キャリブレーションされた信号を使用して対象対象にモデルを適応させ、対象対象対象のTS EEG信号の処理をシミュレートする。
提案手法は,3つの公開ベンチマーク上での最先端の精度を実現し,クロスオブジェクトEEG MI分類における本手法の有効性を実証する。
本研究は,脳-コンピュータインタフェースの実用化にRS脳波信号を活用する可能性を明らかにするものである。
コードはhttps://github.com/SionAn/MICCAI2024-ResTLで公開されている。
関連論文リスト
- CSLP-AE: A Contrastive Split-Latent Permutation Autoencoder Framework
for Zero-Shot Electroencephalography Signal Conversion [49.1574468325115]
脳波分析の鍵となる目的は、基礎となる神経活動(コンテンツ)を抽出し、個体の変動(スタイル)を考慮することである。
近年の音声変換技術の発展に触発されて,脳波変換を直接最適化するCSLP-AEフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-13T22:46:43Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Upper Limb Movement Recognition utilising EEG and EMG Signals for
Rehabilitative Robotics [0.0]
上肢運動分類のための新しい決定レベル多センサ融合手法を提案する。
システムは脳波信号をEMG信号と統合し、両方の情報源から効果的な情報を取得し、ユーザの欲求を理解し予測する。
論文 参考訳(メタデータ) (2022-07-18T14:51:23Z) - EEG2Vec: Learning Affective EEG Representations via Variational
Autoencoders [27.3162026528455]
我々は、感情的な刺激に反応して、潜在ベクトル空間におけるニューラルデータを表現することが、両方の感情状態を予測するのに役立つかどうかを考察する。
脳波データから生成的識別的表現を学習するための条件付き変分オートエンコーダベースのフレームワークであるEEG2Vecを提案する。
論文 参考訳(メタデータ) (2022-07-16T19:25:29Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - A Compact and Interpretable Convolutional Neural Network for
Cross-Subject Driver Drowsiness Detection from Single-Channel EEG [4.963467827017178]
本稿では,ドライバの眠気検出のために,複数の被験者間で共有された脳波特徴を検出するための,コンパクトで解釈可能な畳み込みニューラルネットワークを提案する。
その結果,脳波信号の分類では,被験者11名に対して平均73.22%の精度が得られることがわかった。
論文 参考訳(メタデータ) (2021-05-30T14:36:34Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
分析や分類に有用な特徴を効率的に抽出する識別機構を備えた生体音響信号分類器を提案する。
タスク指向の現在のバイオ音響認識法とは異なり、提案モデルは入力信号をベクトル部分空間に変換することに依存する。
提案法の有効性は,アヌラン,ミツバチ,蚊の3種の生物音響データを用いて検証した。
論文 参考訳(メタデータ) (2021-03-18T11:01:21Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
脳波感情認識のための伝達型注目ニューラルネットワーク(TANN)を提案する。
TANNは、伝達可能な脳波領域のデータとサンプルを適応的に強調することにより、感情的な識別情報を学習する。
これは、複数の脳領域レベル判別器と1つのサンプルレベル判別器の出力を測定することで実現できる。
論文 参考訳(メタデータ) (2020-09-21T02:42:30Z) - Few-Shot Relation Learning with Attention for EEG-based Motor Imagery
Classification [11.873435088539459]
脳波(EEG)信号に基づく脳-コンピュータインタフェース(BCI)が注目されている。
運動画像(MI)データは、リハビリテーションや自律運転のシナリオに使用することができる。
脳波に基づくBCIシステムにはMI信号の分類が不可欠である。
論文 参考訳(メタデータ) (2020-03-03T02:34:44Z) - Motor Imagery Classification of Single-Arm Tasks Using Convolutional
Neural Network based on Feature Refining [5.620334754517149]
運動画像(MI)は、信号の発端から運動機能の回復や回復に一般的に用いられる。
本研究では,BFR-CNN(Band-power Feature Refining Convolutional Neural Network)を提案する。
論文 参考訳(メタデータ) (2020-02-04T04:36:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。