論文の概要: Network Analytics for Anti-Money Laundering -- A Systematic Literature Review and Experimental Evaluation
- arxiv url: http://arxiv.org/abs/2405.19383v3
- Date: Wed, 19 Mar 2025 13:04:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 19:05:29.476728
- Title: Network Analytics for Anti-Money Laundering -- A Systematic Literature Review and Experimental Evaluation
- Title(参考訳): 反モニー洗浄のためのネットワーク分析 -系統的な文献レビューと実験的評価-
- Authors: Bruno Deprez, Toon Vanderschueren, Bart Baesens, Tim Verdonck, Wouter Verbeke,
- Abstract要約: 本稿では,Web of Science and Scopus の97論文をもとに,広範囲かつユニークな文献レビューを行う。
我々は、ほとんどの研究はエキスパートベースのルールと手動の機能に依存していると結論付け、ディープラーニングの手法は勢いを増している。
2つの公開データセットに適用し、手動の特徴工学、ランダムウォークベース、ディープラーニング手法を比較した。
- 参考スコア(独自算出の注目度): 1.7119723306387908
- License:
- Abstract: Money laundering presents a pervasive challenge, burdening society by financing illegal activities. The use of network information is increasingly being explored to more effectively combat money laundering, given it involves connected parties. This led to a surge in research on network analytics (NA) for anti-money laundering (AML). The literature on NA for AML is, however, fragmented and a comprehensive overview of existing work is missing. This results in limited understanding of the methods to apply and their comparative detection power. Therefore, this paper presents an extensive and unique literature review, based on 97 papers from Web of Science and Scopus, resulting in a taxonomy following a recently proposed fraud analytics framework. We conclude that most research relies on expert-based rules and manual features, while deep learning methods have been gaining traction. This paper also presents a comprehensive framework to evaluate and compare the performance of prominent NA methods in a standardized setup. We apply it on two publicly available data sets, comparing manual feature engineering, random walk-based, and deep learning methods. We conclude that (1) network analytics increases the predictive power, but caution is needed when applying GNNs based on the class imbalance and network topology, and that (2) care should be taken with open-source data as this can give overly optimistic results. The open-source implementation facilitates researchers and practitioners to extend upon the results and experiment on proprietary data, promoting a standardized approach for the analysis and evaluation of network analytics for AML.
- Abstract(参考訳): マネーロンダリングは、違法な活動の資金提供によって社会を負担する、広範囲にわたる課題を提示する。
ネットワーク情報の利用は、より効果的にマネーロンダリングと戦うために、ますます検討されている。
これにより、反マネーロンダリング(AML)のためのネットワーク分析(NA)の研究が急増した。
しかし、AMLのNAに関する文献は断片化されており、既存の作業の包括的な概要が欠けている。
これにより、適用方法とその比較検出能力の限定的な理解が得られる。
そこで本研究では,Web of Science and Scopus の97論文をもとに,広範囲かつユニークな文献レビューを行い,最近提案された不正分析の枠組みに従って分類を行った。
我々は、ほとんどの研究はエキスパートベースのルールと手動の機能に依存していると結論付け、ディープラーニングの手法は勢いを増している。
本稿では,NAメソッドの性能を標準化された設定で評価・比較するための包括的フレームワークを提案する。
2つの公開データセットに適用し、手動の特徴工学、ランダムウォークベース、ディープラーニング手法を比較した。
結論として,(1)ネットワーク分析は予測力を増大させるが,クラス不均衡とネットワークトポロジに基づくGNNの適用には注意が必要である。
オープンソース実装は、研究者や実践者が結果を拡張し、プロプライエタリなデータで実験することを促進し、AMLのためのネットワーク分析の分析と評価のための標準化されたアプローチを促進します。
関連論文リスト
- Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - The Shape of Money Laundering: Subgraph Representation Learning on the Blockchain with the Elliptic2 Dataset [6.209290101460395]
サブグラフ表現学習(Subgraph representation learning)は、複雑なネットワーク内の局所構造(または形状)を分析する技術である。
Bitcoinクラスタの122Kラベルのサブグラフを含むグラフデータセットであるElliptic2を紹介する。
このアプローチの即時的な実用価値と、暗号通貨における反マネーロンダリングと法医学的分析における新しい標準の可能性を見出す。
論文 参考訳(メタデータ) (2024-04-29T21:19:41Z) - Neural Active Learning Beyond Bandits [69.99592173038903]
ストリームベースとプールベースの両方のアクティブラーニングをニューラルネットワーク近似を用いて検討する。
ストリームベースおよびプールベースアクティブラーニングのためのニューラルネットワークを新たに設計したエクスプロイトと探索に基づく2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-18T21:52:14Z) - MFABA: A More Faithful and Accelerated Boundary-based Attribution Method
for Deep Neural Networks [69.28125286491502]
我々は,公理に固執する帰属アルゴリズムであるMFABAを紹介する。
結果は、最先端の属性アルゴリズムよりも101.5142倍高速に達成することで、その優位性を証明している。
論文 参考訳(メタデータ) (2023-12-21T07:48:15Z) - BIDRN: A Method of Bidirectional Recurrent Neural Network for Sentiment
Analysis [0.0]
この研究では、感情分析にディープバイオリエント・リカレント・ニューラル・ニューラルネットワークが用いられている。
このデータセットは、公平な意見の抽出が可能な感情分析モデルのトレーニングと評価に使用することができる。
論文 参考訳(メタデータ) (2023-11-13T12:36:53Z) - Textual Data Mining for Financial Fraud Detection: A Deep Learning
Approach [0.0]
本稿では,自然言語処理(以下,NLP)のバイナリ分類タスクを,金融詐欺テキストの分析に活用する深層学習手法を提案する。
私の方法論では、埋め込み層を持つ多層パーセプトロン、Vanilla Recurrent Neural Network(RNN)、Long-Short Term Memory(LSTM)、Gated Recurrent Unit(GRU)など、さまざまな種類のニューラルネットワークモデルが関係しています。
本研究が深層学習,NLP,金融の交差点における研究の進展に寄与するため,私の研究成果は,金融不正検出に重大な影響を及ぼす。
論文 参考訳(メタデータ) (2023-08-05T15:33:10Z) - Finding Money Launderers Using Heterogeneous Graph Neural Networks [0.0]
本稿では,大規模なヘテロジニアスネットワーク内のマネーロンダリング活動を特定するために,グラフニューラルネットワーク(GNN)アプローチを提案する。
我々は、MPNN(Message Passing Neural Network)と呼ばれる同種GNN法を拡張し、異種グラフ上で効果的に動作させる。
本研究は,異種グラフにおける情報の組み合わせにおいて,適切なGNNアーキテクチャを用いることの重要性を強調した。
論文 参考訳(メタデータ) (2023-07-25T13:49:15Z) - LaundroGraph: Self-Supervised Graph Representation Learning for
Anti-Money Laundering [5.478764356647437]
LaundroGraphは、新しい教師付きグラフ表現学習アプローチである。
マネーロンダリング防止プロセスを支援するための洞察を提供する。
我々の知る限りでは、これはAML検出の文脈における最初の完全自己教師システムである。
論文 参考訳(メタデータ) (2022-10-25T21:58:02Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
このレビューは、現在利用可能な機械学習とデータ分析のための最先端ライブラリとフレームワークに関する包括的なビジョンを提供することを目的としている。
現在利用可能なEdge-to-Cloud Continuumに関する実験的な研究のための、主要なシミュレーション、エミュレーション、デプロイメントシステム、テストベッドも調査されている。
論文 参考訳(メタデータ) (2022-04-29T08:06:05Z) - Fighting Money Laundering with Statistics and Machine Learning [95.42181254494287]
反マネーロンダリングのための統計的および機械学習手法に関する科学的文献はほとんどない。
本研究では,クライアントのリスクプロファイリングと疑わしい行動フラグングという2つの中心的要素を持つ統一用語を提案する。
論文 参考訳(メタデータ) (2022-01-11T21:31:18Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。