LDPC stabilizer codes as gapped quantum phases: stability under graph-local perturbations
- URL: http://arxiv.org/abs/2411.02384v1
- Date: Mon, 04 Nov 2024 18:52:44 GMT
- Title: LDPC stabilizer codes as gapped quantum phases: stability under graph-local perturbations
- Authors: Wojciech De Roeck, Vedika Khemani, Yaodong Li, Nicholas O'Dea, Tibor Rakovszky,
- Abstract summary: We generalize the proof of stability of topological order, due to Bravyi, Hastings and Michalakis, to Hamiltonians corresponding to low-density parity check codes.
We show that LDPC codes very generally define stable gapped quantum phases, even in the non-Euclidean setting.
- Score: 0.025206105035672277
- License:
- Abstract: We generalize the proof of stability of topological order, due to Bravyi, Hastings and Michalakis, to stabilizer Hamiltonians corresponding to low-density parity check (LDPC) codes without the restriction of geometric locality in Euclidean space. We consider Hamiltonians $H_0$ defined by $[[N,K,d]]$ LDPC codes which obey certain topological quantum order conditions: (i) code distance $d \geq c \log(N)$, implying local indistinguishability of ground states, and (ii) a mild condition on local and global compatibility of ground states; these include good quantum LDPC codes, and the toric code on a hyperbolic lattice, among others. We consider stability under weak perturbations that are quasi-local on the interaction graph defined by $H_0$, and which can be represented as sums of bounded-norm terms. As long as the local perturbation strength is smaller than a finite constant, we show that the perturbed Hamiltonian has well-defined spectral bands originating from the $O(1)$ smallest eigenvalues of $H_0$. The band originating from the smallest eigenvalue has $2^K$ states, is separated from the rest of the spectrum by a finite energy gap, and has exponentially narrow bandwidth $\delta = C N e^{-\Theta(d)}$, which is tighter than the best known bounds even in the Euclidean case. We also obtain that the new ground state subspace is related to the initial code subspace by a quasi-local unitary, allowing one to relate their physical properties. Our proof uses an iterative procedure that performs successive rotations to eliminate non-frustration-free terms in the Hamiltonian. Our results extend to quantum Hamiltonians built from classical LDPC codes, which give rise to stable symmetry-breaking phases. These results show that LDPC codes very generally define stable gapped quantum phases, even in the non-Euclidean setting, initiating a systematic study of such phases of matter.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Low-density parity-check codes as stable phases of quantum matter [0.0]
Given a quantum error correcting code, when does it define a stable gapped quantum phase of matter?
We prove that a low-density parity-check (LDPC) code defines such a phase, robust against all few-body perturbations.
Our results also show that quantum toric code phases are robust to spatially nonlocal few-body perturbations.
arXiv Detail & Related papers (2024-11-01T19:53:57Z) - Quasi-quantum states and the quasi-quantum PCP theorem [0.21485350418225244]
We show that solving the $k$-local Hamiltonian over the quasi-quantum states is equivalent to optimizing a distribution of assignment over a classical $k$-local CSP.
Our main result is a PCP theorem for the $k$-local Hamiltonian over the quasi-quantum states in the form of a hardness-of-approximation result.
arXiv Detail & Related papers (2024-10-17T13:43:18Z) - On stability of k-local quantum phases of matter [0.4999814847776097]
We analyze the stability of the energy gap to Euclids for Hamiltonians corresponding to general quantum low-density parity-check codes.
We discuss implications for the third law of thermodynamics, as $k$-local Hamiltonians can have extensive zero-temperature entropy.
arXiv Detail & Related papers (2024-05-29T18:00:20Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - Irreducible multi-partite correlations as an order parameter for k-local
nontrivial states [0.0]
We look for a non-geometric quantity that can capture k-local non-triviality of a given state.
We introduce an order parameter designed to capture such correlations.
We discuss general relations between this order parameter and the erasure thresholds of quantum error correcting codes.
arXiv Detail & Related papers (2021-06-09T18:00:00Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Scattering data and bound states of a squeezed double-layer structure [77.34726150561087]
A structure composed of two parallel homogeneous layers is studied in the limit as their widths $l_j$ and $l_j$, and the distance between them $r$ shrinks to zero simultaneously.
The existence of non-trivial bound states is proven in the squeezing limit, including the particular example of the squeezed potential in the form of the derivative of Dirac's delta function.
The scenario how a single bound state survives in the squeezed system from a finite number of bound states in the finite system is described in detail.
arXiv Detail & Related papers (2020-11-23T14:40:27Z) - Circuit lower bounds for low-energy states of quantum code Hamiltonians [17.209060627291315]
We prove circuit lower bounds for all low-energy states of local Hamiltonians arising from quantum error-correcting codes.
We show that low-depth states cannot accurately approximate the ground-energy even in physically relevant systems.
arXiv Detail & Related papers (2020-11-03T22:36:22Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.