論文の概要: Clustering-Based Validation Splits for Domain Generalisation
- arxiv url: http://arxiv.org/abs/2405.19461v1
- Date: Wed, 29 May 2024 19:21:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 19:16:17.579451
- Title: Clustering-Based Validation Splits for Domain Generalisation
- Title(参考訳): クラスタリングに基づくドメイン一般化のための検証スプリット
- Authors: Andrea Napoli, Paul White,
- Abstract要約: トレーニングセットと検証セットの最大平均誤差(MMD)が高いと、選択したモデルの一般化可能性を高めることが提案されている。
カーネルk平均クラスタリングに基づくデータ分割アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper considers the problem of model selection under domain shift. In this setting, it is proposed that a high maximum mean discrepancy (MMD) between the training and validation sets increases the generalisability of selected models. A data splitting algorithm based on kernel k-means clustering, which maximises this objective, is presented. The algorithm leverages linear programming to control the size, label, and (optionally) group distributions of the splits, and comes with convergence guarantees. The technique consistently outperforms alternative splitting strategies across a range of datasets and training algorithms, for both domain generalisation (DG) and unsupervised domain adaptation (UDA) tasks. Analysis also shows the MMD between the training and validation sets to be strongly rank-correlated ($\rho=0.63$) with test domain accuracy, further substantiating the validity of this approach.
- Abstract(参考訳): 本稿では,ドメインシフトによるモデル選択の問題について考察する。
この設定では、トレーニングセットと検証セットの間の最大平均誤差(MMD)が、選択されたモデルの一般化可能性を高めることが提案される。
この目的を最大化するカーネルk平均クラスタリングに基づくデータ分割アルゴリズムを提案する。
このアルゴリズムは線形プログラミングを利用して分割のサイズ、ラベル、(任意に)群分布を制御し、収束を保証する。
このテクニックは、ドメイン一般化(DG)と教師なしドメイン適応(UDA)タスクの両方において、さまざまなデータセットとトレーニングアルゴリズムの代替分割戦略を一貫して上回る。
分析はまた、トレーニングと検証セットの間のMDDが、テスト領域の精度と強いランク関連(\rho=0.63$)であることを示し、このアプローチの有効性をさらに裏付けている。
関連論文リスト
- Distributed Linear Regression with Compositional Covariates [5.085889377571319]
大規模合成データにおける分散スパースペナル化線形ログコントラストモデルに着目する。
2つの異なる制約凸最適化問題を解くために2つの分散最適化手法を提案する。
分散化されたトポロジでは、通信効率の高い正規化推定値を得るための分散座標ワイド降下アルゴリズムを導入する。
論文 参考訳(メタデータ) (2023-10-21T11:09:37Z) - AdaptDHM: Adaptive Distribution Hierarchical Model for Multi-Domain CTR
Prediction [4.299153274884263]
本稿では,適応分布階層モデル (Adaptive Distribution Hierarchical Model, AdaptDHM) という,エレガントで柔軟なマルチディストリビューション・モデリング手法を提案する。
本モデルでは, 予測精度が向上し, トレーニング期間中の時間コストは, 他のモデルに比べて50%以上低下する。
論文 参考訳(メタデータ) (2022-11-22T09:10:37Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Model-Based Domain Generalization [96.84818110323518]
本稿では,モデルベースドメイン一般化問題に対する新しいアプローチを提案する。
我々のアルゴリズムは、最新のwildsベンチマークの最先端手法を最大20ポイント上回った。
論文 参考訳(メタデータ) (2021-02-23T00:59:02Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
深層畳み込みニューラルネットワーク(CNN)内のソースドメインとターゲットドメインにセマンティックセグメンテーションネットワークを適用する既存の技術は、対象ドメイン自身や推定カテゴリ内のクラス間変異を考慮していない。
学習可能なクラスタリングモジュールと、クロスドメイングルーピングとアライメントと呼ばれる新しいドメイン適応フレームワークを導入する。
本手法はセマンティクスセグメンテーションにおける適応性能を一貫して向上させ,様々なドメイン適応設定において最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-15T11:36:21Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised Domain Adapt (UDA) は、ターゲットドメイン上のラベルなしデータの予測を行う分類モデルを学ぶことである。
本稿では,対象データの正規化判別クラスタリングと生成クラスタリングを統合する構造的正規化深層クラスタリングのハイブリッドモデルを提案する。
提案するH-SRDCは, インダクティブ設定とトランスダクティブ設定の両方において, 既存の手法よりも優れている。
論文 参考訳(メタデータ) (2020-12-08T08:52:00Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。