論文の概要: Distributed Linear Regression with Compositional Covariates
- arxiv url: http://arxiv.org/abs/2310.13969v1
- Date: Sat, 21 Oct 2023 11:09:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 04:19:56.746453
- Title: Distributed Linear Regression with Compositional Covariates
- Title(参考訳): 組成共変量を用いた分散線形回帰
- Authors: Yue Chao, Lei Huang, Xuejun Ma
- Abstract要約: 大規模合成データにおける分散スパースペナル化線形ログコントラストモデルに着目する。
2つの異なる制約凸最適化問題を解くために2つの分散最適化手法を提案する。
分散化されたトポロジでは、通信効率の高い正規化推定値を得るための分散座標ワイド降下アルゴリズムを導入する。
- 参考スコア(独自算出の注目度): 5.085889377571319
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the availability of extraordinarily huge data sets, solving the problems
of distributed statistical methodology and computing for such data sets has
become increasingly crucial in the big data area. In this paper, we focus on
the distributed sparse penalized linear log-contrast model in massive
compositional data. In particular, two distributed optimization techniques
under centralized and decentralized topologies are proposed for solving the two
different constrained convex optimization problems. Both two proposed
algorithms are based on the frameworks of Alternating Direction Method of
Multipliers (ADMM) and Coordinate Descent Method of Multipliers(CDMM, Lin et
al., 2014, Biometrika). It is worth emphasizing that, in the decentralized
topology, we introduce a distributed coordinate-wise descent algorithm based on
Group ADMM(GADMM, Elgabli et al., 2020, Journal of Machine Learning Research)
for obtaining a communication-efficient regularized estimation.
Correspondingly, the convergence theories of the proposed algorithms are
rigorously established under some regularity conditions. Numerical experiments
on both synthetic and real data are conducted to evaluate our proposed
algorithms.
- Abstract(参考訳): 膨大なデータセットが利用可能になったことで、分散統計方法論の問題を解決し、そのようなデータセットの計算は、ビッグデータ分野においてますます重要になっている。
本稿では,大規模合成データにおける分散スパースペナル化線形ログコントラストモデルに着目した。
特に, 2つの異なる制約付き凸最適化問題を解くために, 集中型および分散型トポロジの下での2つの分散最適化手法が提案されている。
提案した2つのアルゴリズムは、alternating Direction Method of Multipliers (ADMM) と Coordinate Descent Method of Multipliers (CDMM, Lin et al., 2014 Biometrika) のフレームワークに基づいている。
分散トポロジでは,グループADMM(GADMM, Elgabli et al., 2020, Journal of Machine Learning Research)に基づいて,コミュニケーション効率の高い正規化推定を行う分散座標ワイド降下アルゴリズムを導入する。
対応するアルゴリズムの収束理論は、いくつかの規則性条件下で厳密に確立されている。
提案したアルゴリズムを評価するために,合成データと実データの両方に関する数値実験を行った。
関連論文リスト
- Maximum Likelihood Estimation on Stochastic Blockmodels for Directed Graph Clustering [22.421702511126373]
我々は、有向ブロックモデルにおいて、基盤となるコミュニティを推定するものとしてクラスタリングを定式化する。
本稿では,2つの効率的かつ解釈可能な有向クラスタリングアルゴリズム,スペクトルクラスタリングアルゴリズム,半定値プログラミングに基づくクラスタリングアルゴリズムを紹介する。
論文 参考訳(メタデータ) (2024-03-28T15:47:13Z) - Quantized Hierarchical Federated Learning: A Robust Approach to
Statistical Heterogeneity [3.8798345704175534]
本稿では,コミュニケーション効率に量子化を組み込んだ新しい階層型フェデレーション学習アルゴリズムを提案する。
最適性ギャップと収束率を評価するための包括的な分析フレームワークを提供する。
この結果から,本アルゴリズムはパラメータの範囲で常に高い学習精度を達成できることが判明した。
論文 参考訳(メタデータ) (2024-03-03T15:40:24Z) - Synergistic eigenanalysis of covariance and Hessian matrices for enhanced binary classification [72.77513633290056]
本稿では, 学習モデルを用いて評価したヘッセン行列をトレーニングセットで評価した共分散行列の固有解析と, 深層学習モデルで評価したヘッセン行列を組み合わせた新しい手法を提案する。
本手法は複雑なパターンと関係を抽出し,分類性能を向上する。
論文 参考訳(メタデータ) (2024-02-14T16:10:42Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - A unified consensus-based parallel ADMM algorithm for high-dimensional
regression with combined regularizations [3.280169909938912]
並列交互乗算器 (ADMM) は大規模分散データセットの処理に有効であることが広く認識されている。
提案アルゴリズムは,財務事例の信頼性,安定性,スケーラビリティを示す。
論文 参考訳(メタデータ) (2023-11-21T03:30:38Z) - Stability and Generalization of the Decentralized Stochastic Gradient
Descent Ascent Algorithm [80.94861441583275]
本稿では,分散勾配勾配(D-SGDA)アルゴリズムの一般化境界の複雑さについて検討する。
本研究は,D-SGDAの一般化における各因子の影響を解析した。
また、最適凸凹設定を得るために一般化とバランスをとる。
論文 参考訳(メタデータ) (2023-10-31T11:27:01Z) - On the Effects of Data Heterogeneity on the Convergence Rates of Distributed Linear System Solvers [9.248526557884498]
本稿では,タスクマスターと機械の集合によって分散的あるいは連合的に線形方程式の大規模系を解く問題を考察する。
我々は、この問題を解決するためによく知られたアルゴリズムの2つのクラス、すなわち射影法と最適化法を比較した。
論文 参考訳(メタデータ) (2023-04-20T20:48:00Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
バイレベル最適化は、幅広い機械学習モデルに適用されている。
既存のアルゴリズムの多くは、分散データを扱うことができないように、シングルマシンの設定を制限している。
そこで我々は,勾配追跡通信機構と2つの異なる勾配に基づく分散二段階最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-30T05:29:52Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
本稿では脳波の分類に欠落したデータを扱うための2つの方法を提案する。
第1のアプローチでは、インプットされたデータと$k$-nearestの隣人アルゴリズムとの共分散を推定し、第2のアプローチでは、期待最大化アルゴリズム内で観測データの可能性を活用することにより、観測データに依存する。
その結果, 提案手法は観測データに基づく分類よりも優れており, 欠落したデータ比が増大しても高い精度を維持することができることがわかった。
論文 参考訳(メタデータ) (2021-10-19T14:24:50Z) - Distributed Variational Bayesian Algorithms Over Sensor Networks [6.572330981878818]
一般ベイズ推論問題に対する2つの新しい分散VBアルゴリズムを提案する。
提案アルゴリズムは、核融合センターで利用可能な全データに依存する集中型VBアルゴリズムとほぼ同等の性能を有する。
論文 参考訳(メタデータ) (2020-11-27T08:12:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。