論文の概要: RAP: Efficient Text-Video Retrieval with Sparse-and-Correlated Adapter
- arxiv url: http://arxiv.org/abs/2405.19465v1
- Date: Wed, 29 May 2024 19:23:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 19:16:17.508704
- Title: RAP: Efficient Text-Video Retrieval with Sparse-and-Correlated Adapter
- Title(参考訳): RAP: Sparse-and-Correlated Adapterを用いた効率的なテキストビデオ検索
- Authors: Meng Cao, Haoran Tang, Jinfa Huang, Peng Jin, Can Zhang, Ruyang Liu, Long Chen, Xiaodan Liang, Li Yuan, Ge Li,
- Abstract要約: Text-Video Retrieval (TVR)は、関連するビデオコンテンツと自然言語クエリを連携させることを目的としている。
現在までに、ほとんどの最先端のTVR手法は、大規模な事前学習された視覚モデルに基づいて、画像からビデオへの変換学習を学習している。
パラメータ化層数で事前学習モデルの微調整を行うためのスパース・アンド・コラージュAdaPter (RAP) を提案する。
- 参考スコア(独自算出の注目度): 77.0205013713008
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Text-Video Retrieval (TVR) aims to align relevant video content with natural language queries. To date, most state-of-the-art TVR methods learn image-to-video transfer learning based on large-scale pre-trained visionlanguage models (e.g., CLIP). However, fully fine-tuning these pre-trained models for TVR incurs prohibitively expensive computation costs. To this end, we propose to conduct efficient text-video Retrieval with a sparse-andcorrelated AdaPter (RAP), i.e., fine-tuning the pre-trained model with a few parameterized layers. To accommodate the text-video scenario, we equip our RAP with two indispensable characteristics: temporal sparsity and correlation. Specifically, we propose a low-rank modulation module to refine the per-image features from the frozen CLIP backbone, which accentuates salient frames within the video features while alleviating temporal redundancy. Besides, we introduce an asynchronous self-attention mechanism that first selects the top responsive visual patches and augments the correlation modeling between them with learnable temporal and patch offsets. Extensive experiments on four TVR datasets demonstrate that RAP achieves superior or comparable performance compared to the fully fine-tuned counterpart and other parameter-efficient fine-tuning methods.
- Abstract(参考訳): Text-Video Retrieval (TVR)は、関連するビデオコンテンツと自然言語クエリを連携させることを目的としている。
現在までに、ほとんどの最先端のTVR手法は、大規模な事前学習された視覚言語モデル(例えばCLIP)に基づいて、画像からビデオへの変換学習を学習している。
しかし、TVR用にトレーニング済みのモデルを完全に微調整することは、非常に高価な計算コストを発生させる。
そこで本研究では,テキスト・ビデオ検索の高速化を図るため,テキスト・ビデオ検索の手法をRAP (sparse-andcorrelated AdaPter) を用いて提案する。
テキスト・ビデオのシナリオに適合するため,RAPには時間的間隔と相関性という2つの欠かせない特徴が備わっている。
具体的には,凍結したCLIPバックボーンから画像毎の特徴を改良する低ランク変調モジュールを提案する。
さらに、まずトップレスポンシブな視覚パッチを選択し、学習可能な時間とパッチのオフセットによる相関モデリングを強化する非同期な自己認識機構を導入する。
4つのTVRデータセットに対する大規模な実験により、RAPは完全な微調整や他のパラメータ効率の良い微調整方法と比較して、優れた、または同等のパフォーマンスを達成することが示された。
関連論文リスト
- Inflation with Diffusion: Efficient Temporal Adaptation for
Text-to-Video Super-Resolution [19.748048455806305]
本稿では,効率的な拡散型テキスト・ビデオ・スーパーレゾリューション(SR)チューニング手法を提案する。
本稿では,我々の拡張アーキテクチャに基づく異なるチューニング手法について検討し,計算コストと超解像品質のトレードオフを報告する。
論文 参考訳(メタデータ) (2024-01-18T22:25:16Z) - A Simple Recipe for Contrastively Pre-training Video-First Encoders
Beyond 16 Frames [54.90226700939778]
我々は,大規模な画像テキストモデルを浅部時間融合によりビデオに転送する共通パラダイムを構築した。
1)標準ビデオデータセットにおけるビデオ言語アライメントの低下による空間能力の低下と,(2)処理可能なフレーム数のボトルネックとなるメモリ消費の増大である。
論文 参考訳(メタデータ) (2023-12-12T16:10:19Z) - Video-Teller: Enhancing Cross-Modal Generation with Fusion and
Decoupling [79.49128866877922]
Video-Tellerは、マルチモーダル融合と微粒なモーダルアライメントを利用するビデオ言語基盤モデルである。
Video-Tellerは、凍結した事前訓練されたビジョンと言語モジュールを利用することで、トレーニング効率を高める。
大規模言語モデルの堅牢な言語機能を活用し、簡潔かつ精巧なビデオ記述の生成を可能にする。
論文 参考訳(メタデータ) (2023-10-08T03:35:27Z) - Fine-grained Text-Video Retrieval with Frozen Image Encoders [10.757101644990273]
2段階のテキストビデオ検索アーキテクチャであるCrossTVRを提案する。
第1段階では,既存のTVR手法とコサイン類似性ネットワークを利用して,効率的なテキスト/ビデオ候補選択を行う。
第2段階では,空間次元と時間次元の細粒度マルチモーダル情報をキャプチャするビデオテキストクロスアテンションモジュールを提案する。
論文 参考訳(メタデータ) (2023-07-14T02:57:00Z) - You Can Ground Earlier than See: An Effective and Efficient Pipeline for
Temporal Sentence Grounding in Compressed Videos [56.676761067861236]
ビデオがトリミングされていない場合、時間的文のグラウンド化は、文問合せに従って目的のモーメントを意味的に見つけることを目的としている。
それまでの優れた作品は、かなり成功したが、それらはデコードされたフレームから抽出されたハイレベルな視覚的特徴にのみ焦点を当てている。
本稿では,圧縮された映像を直接視覚入力として利用する,圧縮された領域のTSGを提案する。
論文 参考訳(メタデータ) (2023-03-14T12:53:27Z) - LiteVL: Efficient Video-Language Learning with Enhanced Spatial-Temporal
Modeling [48.283659682112926]
本稿では,事前学習した画像言語モデルBLIPを,下流タスク上で直接ビデオテキストモデルに適応させるLiteVLを提案する。
また、テキスト上に埋め込まれた微細なビデオ埋め込み条件を適応的に重み付けする非パラメトリックプーリング機構を提案する。
論文 参考訳(メタデータ) (2022-10-21T13:03:49Z) - Recurrent Video Restoration Transformer with Guided Deformable Attention [116.1684355529431]
本稿では,グローバルなリカレントフレームワーク内で,隣接するフレームを並列に処理するRVRTを提案する。
RVRTは、バランスの取れたモデルサイズ、メモリとランタイムをテストするベンチマークデータセット上で、最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-06-05T10:36:09Z) - Adaptive Compact Attention For Few-shot Video-to-video Translation [13.535988102579918]
本稿では,複数の参照画像からコンテキスト特徴を効率的に抽出する適応型コンパクトアテンション機構を提案する。
我々の中心となる考え方は、すべての参照画像からより高レベルな表現としてコンパクトな基底集合を抽出することである。
提案手法を大規模トーキングヘッドビデオデータセットと人間のダンスデータセットで広範囲に評価した。
論文 参考訳(メタデータ) (2020-11-30T11:19:12Z) - Temporal Context Aggregation for Video Retrieval with Contrastive
Learning [81.12514007044456]
フレームレベルの特徴間の時間的長距離情報を組み込んだビデオ表現学習フレームワークTCAを提案する。
提案手法は,映像レベルの特徴を持つ最先端の手法に対して,FIVR-200Kでは17% mAPの大幅な性能上の優位性を示す。
論文 参考訳(メタデータ) (2020-08-04T05:24:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。