論文の概要: Bridging Vision and Language: Modeling Causality and Temporality in Video Narratives
- arxiv url: http://arxiv.org/abs/2412.10720v1
- Date: Sat, 14 Dec 2024 07:28:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:57:49.355216
- Title: Bridging Vision and Language: Modeling Causality and Temporality in Video Narratives
- Title(参考訳): ブリッジングビジョンと言語:ビデオナラティブにおける因果関係と時間関係のモデル化
- Authors: Ji-jun Park, Soo-joon Choi,
- Abstract要約: 本稿では,Causal-Temporal Reasoning Moduleを最先端のLVLMに統合する拡張フレームワークを提案する。
CTRMはCausal Dynamics(CDE)とTemporal Learner(TRL)の2つの重要なコンポーネントから構成される。
大規模ビデオテキストデータセットの事前学習を併用して,モデル最適化のための多段階学習戦略を設計する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Video captioning is a critical task in the field of multimodal machine learning, aiming to generate descriptive and coherent textual narratives for video content. While large vision-language models (LVLMs) have shown significant progress, they often struggle to capture the causal and temporal dynamics inherent in complex video sequences. To address this limitation, we propose an enhanced framework that integrates a Causal-Temporal Reasoning Module (CTRM) into state-of-the-art LVLMs. CTRM comprises two key components: the Causal Dynamics Encoder (CDE) and the Temporal Relational Learner (TRL), which collectively encode causal dependencies and temporal consistency from video frames. We further design a multi-stage learning strategy to optimize the model, combining pre-training on large-scale video-text datasets, fine-tuning on causally annotated data, and contrastive alignment for better embedding coherence. Experimental results on standard benchmarks such as MSVD and MSR-VTT demonstrate that our method outperforms existing approaches in both automatic metrics (CIDEr, BLEU-4, ROUGE-L) and human evaluations, achieving more fluent, coherent, and relevant captions. These results validate the effectiveness of our approach in generating captions with enriched causal-temporal narratives.
- Abstract(参考訳): ビデオキャプションはマルチモーダル機械学習の分野において重要な課題であり、ビデオコンテンツのための記述的かつ一貫性のあるテキスト物語を生成することを目的としている。
大きな視覚言語モデル(LVLM)は大きな進歩を見せているが、複雑なビデオシーケンスに固有の因果的・時間的ダイナミクスを捉えるのに苦労することが多い。
この制限に対処するため,我々は,Cousal-Temporal Reasoning Module (CTRM)を最先端のLVLMに統合する拡張フレームワークを提案する。
CTRMはCausal Dynamics Encoder (CDE) と、TRL (Temporal Relational Learner) という2つの重要なコンポーネントから構成されている。
さらに、大規模なビデオテキストデータセットの事前学習、因果注釈付きデータの微調整、より優れた埋め込みコヒーレンスのためのコントラストアライメントを組み合わせたモデル最適化のための多段階学習戦略を設計する。
MSVD や MSR-VTT などの標準ベンチマークによる実験結果から,提案手法は自動測定(CIDEr,BLEU-4,ROUGE-L)と人的評価の両方において既存の手法よりも優れており,より流動的でコヒーレントなキャプション,関連するキャプションを実現していることが示された。
以上の結果から,より豊かな因果的物語のキャプション生成におけるアプローチの有効性が検証された。
関連論文リスト
- MLLM as Video Narrator: Mitigating Modality Imbalance in Video Moment Retrieval [53.417646562344906]
Video Moment Retrieval (VMR) は、自然言語クエリが与えられた未トリミング長ビデオ内の特定の時間セグメントをローカライズすることを目的としている。
既存の方法は、しばしば不十分なトレーニングアノテーションに悩まされる。つまり、文は通常、単語の多様性が制限された前景の顕著なビデオ内容のごく一部と一致する。
この本質的なモダリティの不均衡は、視覚情報のかなりの部分がテキストと一致しないまま残されている。
本研究では,MLLMをビデオナレーターとして用いて,ビデオのテキスト記述を多用し,モダリティの不均衡を緩和し,時間的局所化を促進させる。
論文 参考訳(メタデータ) (2024-06-25T18:39:43Z) - Investigating Video Reasoning Capability of Large Language Models with Tropes in Movies [69.28082193942991]
本稿では、これまで見過ごされていた2つの重要なビデオ推論スキルを探索するためのテストベッドとして設計された、新しいデータセットであるTropes in Movies (TiM)を紹介する。
映画ストーリーテリングのトポロジを利用して、TiMは最先端のLCMベースのアプローチの推論能力を評価する。
これらの欠陥に対処するために、FEVoRI(Face-Enhanced Viper of Role Interactions)とConQueR(Context Query Reduction)を提案する。
論文 参考訳(メタデータ) (2024-06-16T12:58:31Z) - NarrativeBridge: Enhancing Video Captioning with Causal-Temporal Narrative [19.79736018383692]
既存のビデオキャプションベンチマークとモデルは、因果的時間的物語のコヒーレントな表現を欠いている。
本研究では,(1)大規模言語モデルと少数ショットプロンプトを用いて生成された新しい因果的ナラティブ(CTN)キャプションベンチマークと,(2)原因と影響のダイナミクスを独立に捉えるための別個のエンコーダを備えた専用因果的ネットワーク(CEN)アーキテクチャからなるナラティブブリッジを提案する。
論文 参考訳(メタデータ) (2024-06-10T17:34:24Z) - RAP: Efficient Text-Video Retrieval with Sparse-and-Correlated Adapter [77.0205013713008]
Text-Video Retrieval (TVR)は、関連するビデオコンテンツと自然言語クエリを連携させることを目的としている。
現在までに、ほとんどの最先端のTVR手法は、大規模な事前学習された視覚モデルに基づいて、画像からビデオへの変換学習を学習している。
パラメータ化層数で事前学習モデルの微調整を行うためのスパース・アンド・コラージュAdaPter (RAP) を提案する。
論文 参考訳(メタデータ) (2024-05-29T19:23:53Z) - Context-Enhanced Video Moment Retrieval with Large Language Models [22.283367604425916]
ビデオモーメント検索(VMR)の現在の手法は、特定の環境詳細、キャラクター記述、アクション物語を含む複雑な状況の整合に苦慮している。
本稿では,LMR(Large Language Model-Guided Moment Retrieval)アプローチを提案する。
大規模な実験により、LMRは最先端の結果を達成し、挑戦的なQVHighlightsとCharades-STAベンチマークにおいて、最も近い競合相手を3.28%、そして4.06%で上回った。
論文 参考訳(メタデータ) (2024-05-21T07:12:27Z) - Tuning Large Multimodal Models for Videos using Reinforcement Learning from AI Feedback [38.708690624594794]
ビデオとテキストのマルチモーダルアライメントは、主にマルチモーダル命令・チューンデータのボリュームと品質が不足しているため、依然として困難である。
本稿では,AIフィードバックからの強化学習(Reinforcement Learning from AI Feedback, RLAIF)と呼ばれる,マルチモーダルAIシステムを用いた新たなアライメント戦略を提案する。
具体的には、嗜好フィードバックの生成中に、詳細な映像記述を文脈として提供することによって、文脈対応報酬モデルを提案する。
論文 参考訳(メタデータ) (2024-02-06T06:27:40Z) - Zero-Shot Video Moment Retrieval from Frozen Vision-Language Models [58.17315970207874]
モーメント・テキストアライメントを容易にするため、任意のVLMから一般化可能なビジュアル・テクスチャの事前適応のためのゼロショット手法を提案する。
3つのVMRベンチマークデータセットで実施された実験は、ゼロショットアルゴリズムの顕著なパフォーマンス上の利点を示している。
論文 参考訳(メタデータ) (2023-09-01T13:06:50Z) - DirecT2V: Large Language Models are Frame-Level Directors for Zero-Shot
Text-to-Video Generation [37.25815760042241]
本稿では,テキスト・ツー・ビデオ(T2V)ビデオを生成するための新しいフレームワークであるDirecT2Vを紹介する。
拡散モデルに新しい値マッピング法とデュアルソフトマックスフィルタリングを適用し、追加のトレーニングを必要としない。
実験により,視覚的コヒーレントかつストーリーフルなビデオ制作におけるフレームワークの有効性が検証された。
論文 参考訳(メタデータ) (2023-05-23T17:57:09Z) - Structured Video-Language Modeling with Temporal Grouping and Spatial Grounding [112.3913646778859]
簡単なビデオ言語モデリングフレームワークであるS-ViLMを提案する。
これには、学習領域オブジェクトのアライメントと時間認識機能を促進するために、クリップ間の空間的接地と、クリップ内の時間的グループ化という、2つの新しい設計が含まれている。
S-ViLMは4つの下流タスクにおいて、最先端の手法を大幅に超えている。
論文 参考訳(メタデータ) (2023-03-28T22:45:07Z) - Object Relational Graph with Teacher-Recommended Learning for Video
Captioning [92.48299156867664]
本稿では,新しいモデルと効果的なトレーニング戦略の両方を含む完全なビデオキャプションシステムを提案する。
具体的には,オブジェクトリレーショナルグラフ(ORG)に基づくエンコーダを提案する。
一方,教師推薦学習(TRL)手法を設計し,成功した外部言語モデル(ELM)をフル活用し,豊富な言語知識をキャプションモデルに統合する。
論文 参考訳(メタデータ) (2020-02-26T15:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。