Crowdsourcing with Difficulty: A Bayesian Rating Model for Heterogeneous Items
- URL: http://arxiv.org/abs/2405.19521v2
- Date: Mon, 21 Oct 2024 18:43:27 GMT
- Title: Crowdsourcing with Difficulty: A Bayesian Rating Model for Heterogeneous Items
- Authors: Seong Woo Han, Ozan Adıgüzel, Bob Carpenter,
- Abstract summary: In applied statistics and machine learning, the "gold standards" used for training are often biased and almost always noisy.
Dawid and Skene's justifiably popular crowdsourcing model adjusts for rater (coder, annotator) sensitivity and specificity, but fails to capture distributional properties of rating data gathered for training.
We introduce a general purpose measurement-error model with which we can infer consensus categories by adding item-level effects for difficulty, discriminativeness, and guessability.
- Score: 0.716879432974126
- License:
- Abstract: In applied statistics and machine learning, the "gold standards" used for training are often biased and almost always noisy. Dawid and Skene's justifiably popular crowdsourcing model adjusts for rater (coder, annotator) sensitivity and specificity, but fails to capture distributional properties of rating data gathered for training, which in turn biases training. In this study, we introduce a general purpose measurement-error model with which we can infer consensus categories by adding item-level effects for difficulty, discriminativeness, and guessability. We further show how to constrain the bimodal posterior of these models to avoid (or if necessary, allow) adversarial raters. We validate our model's goodness of fit with posterior predictive checks, the Bayesian analogue of $\chi^2$ tests. Dawid and Skene's model is rejected by goodness of fit tests, whereas our new model, which adjusts for item heterogeneity, is not rejected. We illustrate our new model with two well-studied data sets, binary rating data for caries in dental X-rays and implication in natural language.
Related papers
- Universality in Transfer Learning for Linear Models [18.427215139020625]
We study the problem of transfer learning in linear models for both regression and binary classification.
We provide an exact and rigorous analysis and relate generalization errors (in regression) and classification errors (in binary classification) for the pretrained and fine-tuned models.
arXiv Detail & Related papers (2024-10-03T03:09:09Z) - Improving Heterogeneous Model Reuse by Density Estimation [105.97036205113258]
This paper studies multiparty learning, aiming to learn a model using the private data of different participants.
Model reuse is a promising solution for multiparty learning, assuming that a local model has been trained for each party.
arXiv Detail & Related papers (2023-05-23T09:46:54Z) - Towards Robust Visual Question Answering: Making the Most of Biased
Samples via Contrastive Learning [54.61762276179205]
We propose a novel contrastive learning approach, MMBS, for building robust VQA models by Making the Most of Biased Samples.
Specifically, we construct positive samples for contrastive learning by eliminating the information related to spurious correlation from the original training samples.
We validate our contributions by achieving competitive performance on the OOD dataset VQA-CP v2 while preserving robust performance on the ID dataset VQA v2.
arXiv Detail & Related papers (2022-10-10T11:05:21Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
Language models can learn a range of capabilities from unsupervised training on text corpora.
It is often easier for humans to choose between options than to provide labeled data, and prior work has achieved state-of-the-art performance by training a reward model from such preference comparisons.
We seek to address these problems via uncertainty estimation, which can improve sample efficiency and robustness using active learning and risk-averse reinforcement learning.
arXiv Detail & Related papers (2022-03-14T20:13:21Z) - Right for the Right Latent Factors: Debiasing Generative Models via
Disentanglement [20.41752850243945]
Key assumption of most statistical machine learning methods is that they have access to independent samples from the distribution of data they encounter at test time.
In particular, machine learning models have been shown to exhibit Clever-Hans-like behaviour, meaning that spurious correlations in the training set are inadvertently learnt.
We propose to debias generative models by disentangling their internal representations, which is achieved via human feedback.
arXiv Detail & Related papers (2022-02-01T13:16:18Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Adversarial robustness for latent models: Revisiting the robust-standard
accuracies tradeoff [12.386462516398472]
adversarial training is often observed to drop the standard test accuracy.
In this paper, we argue that this tradeoff is mitigated when the data enjoys a low-dimensional structure.
We show that as the manifold dimension to the ambient dimension decreases, one can obtain models that are nearly optimal with respect to both, the standard accuracy and the robust accuracy measures.
arXiv Detail & Related papers (2021-10-22T17:58:27Z) - On the Efficacy of Adversarial Data Collection for Question Answering:
Results from a Large-Scale Randomized Study [65.17429512679695]
In adversarial data collection (ADC), a human workforce interacts with a model in real time, attempting to produce examples that elicit incorrect predictions.
Despite ADC's intuitive appeal, it remains unclear when training on adversarial datasets produces more robust models.
arXiv Detail & Related papers (2021-06-02T00:48:33Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.