論文の概要: FTS: A Framework to Find a Faithful TimeSieve
- arxiv url: http://arxiv.org/abs/2405.19647v2
- Date: Sat, 10 Aug 2024 08:42:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 21:12:59.758466
- Title: FTS: A Framework to Find a Faithful TimeSieve
- Title(参考訳): FTS: 忠実なタイムセーブを見つけるためのフレームワーク
- Authors: Songning Lai, Ninghui Feng, Jiechao Gao, Hao Wang, Haochen Sui, Xin Zou, Jiayu Yang, Wenshuo Chen, Hang Zhao, Xuming Hu, Yutao Yue,
- Abstract要約: 本稿では,TimeSieveにおける不信の識別と修正を目的とした新しいフレームワークを提案する。
我々のフレームワークは、モデルの安定性と忠実性を高めるために設計されており、その出力が上記の要因の影響を受けにくいことを保証します。
- 参考スコア(独自算出の注目度): 43.46528328262752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of time series forecasting has garnered significant attention in recent years, prompting the development of advanced models like TimeSieve, which demonstrates impressive performance. However, an analysis reveals certain unfaithfulness issues, including high sensitivity to random seeds, input and layer noise perturbations and parametric perturbations. Recognizing these challenges, we embark on a quest to define the concept of \textbf{\underline{F}aithful \underline{T}ime\underline{S}ieve \underline{(FTS)}}, a model that consistently delivers reliable and robust predictions. To address these issues, we propose a novel framework aimed at identifying and rectifying unfaithfulness in TimeSieve. Our framework is designed to enhance the model's stability and faithfulness, ensuring that its outputs are less susceptible to the aforementioned factors. Experimentation validates the effectiveness of our proposed framework, demonstrating improved faithfulness in the model's behavior.
- Abstract(参考訳): 時系列予測の分野は近年大きな注目を集め、TimeSieveのような先進的なモデルの開発に拍車をかけた。
しかし、ある分析では、ランダムな種子に対する高い感度、入力と層ノイズの摂動、パラメトリックな摂動など、ある種の不誠実さの問題を明らかにしている。
これらの課題を認識し、信頼性と堅牢な予測を一貫して提供するモデルである \textbf{\underline{F}aithful \underline{T}ime\underline{S}ieve \underline{S}ieve \underline{(FTS)}} の概念を定義する。
これらの課題に対処するため,TimeSieveにおける不信の識別と修正を目的とした新しいフレームワークを提案する。
我々のフレームワークは、モデルの安定性と忠実性を高めるために設計されており、その出力が上記の要因の影響を受けにくいことを保証します。
実験により,提案手法の有効性が検証され,モデルの振舞いにおける忠実性の向上が示された。
関連論文リスト
- LoGU: Long-form Generation with Uncertainty Expressions [49.76417603761989]
不確実性を伴う長文生成(LoGU)の課題について紹介する。
不確実性抑制と不確実性誤認の2つの主要な課題を特定します。
当社のフレームワークでは,原子的クレームに基づく不確実性を改善するため,分割・分散戦略を採用している。
提案手法が精度を向上し,幻覚を低減し,応答の包括性を維持できることを示す。
論文 参考訳(メタデータ) (2024-10-18T09:15:35Z) - Recurrent Neural Goodness-of-Fit Test for Time Series [8.22915954499148]
時系列データは、金融や医療など、さまざまな分野において重要である。
従来の評価基準は、時間的依存関係と潜在的な特徴の高次元性のために不足している。
Recurrent Neural (RENAL) Goodness-of-Fit testは,生成時系列モデルを評価するための新しい,統計的に厳密なフレームワークである。
論文 参考訳(メタデータ) (2024-10-17T19:32:25Z) - ReliOcc: Towards Reliable Semantic Occupancy Prediction via Uncertainty Learning [26.369237406972577]
視覚中心のセマンティック占有予測は、自律運転において重要な役割を果たす。
カメラからのセマンティック占有率を予測するための信頼性を探求する研究は、まだ少ない。
本稿では,カメラによる占有ネットワークの信頼性向上を目的としたReliOccを提案する。
論文 参考訳(メタデータ) (2024-09-26T16:33:16Z) - Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations [80.86128012438834]
モデルシフトに対する反ファクトの堅牢性を計算することはNP完全であることを示す。
本稿では,頑健性の厳密な推定を高い保証で実現する新しい確率論的手法を提案する。
論文 参考訳(メタデータ) (2024-07-10T09:13:11Z) - Extreme Miscalibration and the Illusion of Adversarial Robustness [66.29268991629085]
敵の訓練は、しばしばモデルの堅牢性を高めるために使用される。
我々は、この観測されたロバストネスの利得はロバストネスの錯覚(IOR)であることを示した。
我々は,NLPコミュニティに対して,試験時間温度のスケーリングを堅牢性評価に組み込むよう促す。
論文 参考訳(メタデータ) (2024-02-27T13:49:12Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
我々は、複数のモデルを含む人間のポーズ予測のためのオープンソースのライブラリを開発し、複数のデータセットをサポートする。
我々は、パフォーマンスを高め、より良い信頼をもたらすために、問題の2つの不確実性を考案する。
論文 参考訳(メタデータ) (2023-04-13T17:56:08Z) - Robust Probabilistic Time Series Forecasting [20.235389891676512]
本稿では,頑健な確率的時系列予測のためのフレームワークを提案する。
逆入力摂動の概念を一般化し、境界ワッサーシュタイン偏差の項でロバストネスの概念を定式化する。
本手法は,加法的対向攻撃による予測品質の向上と雑音観測の補足による予測整合性向上に実証的に有効である。
論文 参考訳(メタデータ) (2022-02-24T05:46:26Z) - Reliable Post hoc Explanations: Modeling Uncertainty in Explainability [44.9824285459365]
ブラックボックスの説明は、高レベルの設定でモデルの信頼性を確立するために、ますます採用されている。
先行研究では、最先端の技術が生み出す説明は一貫性がなく不安定であり、その正確性や信頼性についての洞察はほとんど得られないことが示されている。
局所的な説明と関連する不確実性を生成するための新しいベイズ的枠組みを開発する。
論文 参考訳(メタデータ) (2020-08-11T22:52:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。