論文の概要: Feature Fitted Online Conformal Prediction for Deep Time Series Forecasting Model
- arxiv url: http://arxiv.org/abs/2505.08158v1
- Date: Tue, 13 May 2025 01:33:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.387186
- Title: Feature Fitted Online Conformal Prediction for Deep Time Series Forecasting Model
- Title(参考訳): Deep Time Series Forecasting Modelのためのオンラインコンフォーマル予測機能
- Authors: Xiannan Huang, Shuhan Qiu,
- Abstract要約: 時系列予測は多くのアプリケーションにおいて重要であり、深層学習に基づく点予測モデルは高い性能を示している。
既存の信頼区間モデリングアプローチは、重要な制限に悩まされている。
本稿では,リトレーニングを伴わずに,有効なカバレッジと短い間隔長を提供する軽量な予測予測手法を提案する。
- 参考スコア(独自算出の注目度): 0.8287206589886881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting is critical for many applications, where deep learning-based point prediction models have demonstrated strong performance. However, in practical scenarios, there is also a need to quantify predictive uncertainty through online confidence intervals. Existing confidence interval modeling approaches building upon these deep point prediction models suffer from key limitations: they either require costly retraining, fail to fully leverage the representational strengths of deep models, or lack theoretical guarantees. To address these gaps, we propose a lightweight conformal prediction method that provides valid coverage and shorter interval lengths without retraining. Our approach leverages features extracted from pre-trained point prediction models to fit a residual predictor and construct confidence intervals, further enhanced by an adaptive coverage control mechanism. Theoretically, we prove that our method achieves asymptotic coverage convergence, with error bounds dependent on the feature quality of the underlying point prediction model. Experiments on 12 datasets demonstrate that our method delivers tighter confidence intervals while maintaining desired coverage rates. Code, model and dataset in \href{https://github.com/xiannanhuang/FFDCI}{Github}
- Abstract(参考訳): 時系列予測は多くのアプリケーションにおいて重要であり、深層学習に基づく点予測モデルは高い性能を示している。
しかし、現実的なシナリオでは、オンラインの信頼区間を通じて予測の不確実性を定量化する必要がある。
既存の信頼区間モデリングアプローチは、これらの深度予測モデルの上に構築されており、コストのかかる再訓練を必要とするか、深度モデルの表現力を完全に活用できないか、理論的な保証が欠如している。
これらのギャップに対処するため,本研究では,リトレーニングを伴わずに,有効なカバレッジと短い間隔長を提供する軽量なコンフォメーション予測手法を提案する。
提案手法では,事前学習した点予測モデルから抽出した特徴を利用して,残差予測器に適合し,信頼区間を構築する。
理論的には,本手法が漸近的範囲収束を実現することを証明し,誤差境界は基礎となる点予測モデルの特徴量に依存する。
12のデータセットに対する実験により,本手法は所望のカバレッジ率を維持しつつ,より厳密な信頼区間を提供することが示された。
コード、モデル、データセットは \href{https://github.com/xiannanhuang/FFDCI}{Github} にある。
関連論文リスト
- Uncertainty-Guided Enhancement on Driving Perception System via Foundation Models [37.35848849961951]
本研究では、基礎モデルを利用して既存の駆動知覚モデルから予測を洗練させる手法を開発した。
本手法では,予測精度が10~15%向上し,基礎モデルのクエリ数を50%削減する。
論文 参考訳(メタデータ) (2024-10-02T00:46:19Z) - Deep Non-Parametric Time Series Forecaster [19.800783133682955]
提案手法は, 予測分布のパラメトリック形式を仮定せず, 学習可能な戦略に従って実験分布からサンプリングして予測を生成する。
提案手法のグローバルバージョンを開発し,複数の時系列にまたがる情報を活用することで,サンプリング戦略を自動的に学習する。
論文 参考訳(メタデータ) (2023-12-22T12:46:30Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Counterfactual Explanations for Time Series Forecasting [14.03870816983583]
本稿では,時系列予測における対実生成の新たな問題を定式化し,ForecastCFと呼ばれるアルゴリズムを提案する。
ForecastCFは、勾配に基づく摂動を元の時系列に適用することで、この問題を解決する。
以上の結果から,ForecastCFは,逆ファクト的妥当性とデータ多様体の近接性の観点から,ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-10-12T08:51:59Z) - Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
最近の研究では、ディープニューラルネットワーク(DNN)が過信的な予測を行う傾向があることが示されている。
予測平均信頼度と予測確実性(MACC)の多クラスアライメントとして知られる簡易なプラグアンドプレイ補助損失を特徴とする列車時キャリブレーション法を提案する。
本手法は,領域内および領域外両方のキャリブレーション性能を実現する。
論文 参考訳(メタデータ) (2023-09-06T00:56:24Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
本稿では,モデルが点予測ではなく,その予測に対して不確実な推定を行うような,頑健な予測推論の手順について述べる。
本稿では, トレーニング集団の周囲に$f$-divergence のボールを用いて, 任意のテスト分布に対して適切なカバレッジレベルを与える予測セットを生成する手法を提案する。
私たちの方法論の重要な構成要素は、将来のデータシフトの量を見積り、それに対する堅牢性を構築することです。
論文 参考訳(メタデータ) (2020-08-10T17:09:16Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。