論文の概要: Text Guided Image Editing with Automatic Concept Locating and Forgetting
- arxiv url: http://arxiv.org/abs/2405.19708v1
- Date: Thu, 30 May 2024 05:36:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 17:57:08.511065
- Title: Text Guided Image Editing with Automatic Concept Locating and Forgetting
- Title(参考訳): テキストガイド画像編集における概念位置の自動配置と予測
- Authors: Jia Li, Lijie Hu, Zhixian He, Jingfeng Zhang, Tianhang Zheng, Di Wang,
- Abstract要約: 画像中の潜在的なターゲット概念を特定するために,Locate and Forget (LaF) と呼ばれる新しい手法を提案する。
本手法はベースラインと比較して,テキスト誘導画像編集作業において質的かつ定量的に優位性を示す。
- 参考スコア(独自算出の注目度): 27.70615803908037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancement of image-to-image diffusion models guided by text, significant progress has been made in image editing. However, a persistent challenge remains in seamlessly incorporating objects into images based on textual instructions, without relying on extra user-provided guidance. Text and images are inherently distinct modalities, bringing out difficulties in fully capturing the semantic intent conveyed through language and accurately translating that into the desired visual modifications. Therefore, text-guided image editing models often produce generations with residual object attributes that do not fully align with human expectations. To address this challenge, the models should comprehend the image content effectively away from a disconnect between the provided textual editing prompts and the actual modifications made to the image. In our paper, we propose a novel method called Locate and Forget (LaF), which effectively locates potential target concepts in the image for modification by comparing the syntactic trees of the target prompt and scene descriptions in the input image, intending to forget their existence clues in the generated image. Compared to the baselines, our method demonstrates its superiority in text-guided image editing tasks both qualitatively and quantitatively.
- Abstract(参考訳): テキストによる画像間拡散モデルの進歩により、画像編集において顕著な進歩が見られた。
しかし、継続する課題は、ユーザーが提供する追加のガイダンスに頼ることなく、テキスト命令に基づく画像にオブジェクトをシームレスに組み込むことである。
テキストと画像は本質的に異なるモダリティであり、言語を通して伝達される意味的な意図を完全に把握し、それを望まれる視覚的な修正に正確に翻訳することが困難である。
したがって、テキスト誘導画像編集モデルは、人間の期待と完全に一致しない残像特性を持つ世代を生成することが多い。
この課題に対処するために、モデルでは、提供されたテキスト編集プロンプトと実際の画像修正との間の切断から、画像内容を効果的に理解する必要がある。
本稿では,入力画像におけるターゲットプロンプトの構文木とシーン記述を比較して,画像中の潜在的なターゲット概念を効果的に検出する,Locate and Forget (LaF) という新しい手法を提案する。
本手法はベースラインと比較して,テキスト誘導画像編集作業において質的かつ定量的に優位性を示す。
関連論文リスト
- DM-Align: Leveraging the Power of Natural Language Instructions to Make Changes to Images [55.546024767130994]
本稿では,画像のどの部分を変更するか,保存するかを明確に推論することで,画像エディタのテキストベースの制御を強化する新しいモデルを提案する。
元のソースイメージの記述と必要な更新を反映する命令と入力イメージとの間の単語アライメントに依存する。
Bisonデータセットのサブセットと、Dreamと呼ばれる自己定義データセットで評価される。
論文 参考訳(メタデータ) (2024-04-27T22:45:47Z) - Training-Free Consistent Text-to-Image Generation [80.4814768762066]
テキスト・ツー・イメージ・モデルは様々なプロンプトで同じ主題を表現できる。
既存のアプローチは、特定のユーザが提供する主題を記述する新しい単語を教えるためにモデルを微調整する。
本研究では、事前学習モデルの内部アクティベーションを共有することによって、一貫した主題生成を可能にする、トレーニング不要なアプローチであるConsiStoryを提案する。
論文 参考訳(メタデータ) (2024-02-05T18:42:34Z) - AdapEdit: Spatio-Temporal Guided Adaptive Editing Algorithm for
Text-Based Continuity-Sensitive Image Editing [24.9487669818162]
本稿では,適応的な画像編集を実現するための時間的ガイド付き適応編集アルゴリズムAdapEditを提案する。
我々のアプローチは、モデルの事前保存において大きな利点があり、モデルトレーニング、微調整された追加データ、最適化を必要としない。
提案手法は,様々な原画像や編集命令を対象とし,競争性能を実証し,従来の手法よりも優れていたことを示す。
論文 参考訳(メタデータ) (2023-12-13T09:45:58Z) - Dynamic Prompt Learning: Addressing Cross-Attention Leakage for
Text-Based Image Editing [23.00202969969574]
そこで本稿では,テキストプロンプト中の名詞の正しい単語に注意を向けるために,クロスアテンションマップを強制する動的プロンプト学習(DPL)を提案する。
本稿では,Word-Swap, Prompt Refinement, Attention Re-weightingの編集結果の改善について述べる。
論文 参考訳(メタデータ) (2023-09-27T13:55:57Z) - Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval [11.798006331912056]
テキスト・ツー・イメージ・パーソナリティ検索(TIPR)の目的は、与えられたテキスト記述に従って特定の人物画像を取得することである。
本稿では,人物画像と対応するテキスト間のきめ細かいインタラクションとアライメントを構築するための新しいTIPRフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-18T08:23:46Z) - iEdit: Localised Text-guided Image Editing with Weak Supervision [53.082196061014734]
テキスト誘導画像編集のための新しい学習法を提案する。
ソースイメージに条件付けされた画像とテキスト編集プロンプトを生成する。
画像の忠実度、CLIPアライメントスコア、および生成された画像と実際の画像の両方を定性的に編集する点において、画像に対して好ましい結果を示す。
論文 参考訳(メタデータ) (2023-05-10T07:39:14Z) - Zero-shot Image-to-Image Translation [57.46189236379433]
手動のプロンプトを使わずに元の画像を保存できる画像から画像への変換法であるpix2pix-zeroを提案する。
本稿では,拡散過程全体を通して入力画像の相互注意マップを維持することを目的とした,相互注意誘導を提案する。
本手法では,これらの編集のための追加のトレーニングを必要とせず,既存のテキスト・画像拡散モデルを直接使用することができる。
論文 参考訳(メタデータ) (2023-02-06T18:59:51Z) - Imagen Editor and EditBench: Advancing and Evaluating Text-Guided Image
Inpainting [53.708523312636096]
本稿では,テキスト誘導画像のインペイントを微調整し,カスケード拡散モデルであるImagen Editorを提案する。
編集はテキストプロンプトに忠実で、オブジェクト検出器を使用してトレーニング中に塗装マスクを提案する。
質的,定量的な評価を改善するために,テキスト誘導画像の塗り絵の体系的ベンチマークであるEditBenchを導入する。
論文 参考訳(メタデータ) (2022-12-13T21:25:11Z) - Plug-and-Play Diffusion Features for Text-Driven Image-to-Image
Translation [10.39028769374367]
本稿では,画像間翻訳の領域にテキスト・ツー・イメージ合成を取り入れた新しいフレームワークを提案する。
本手法は,事前学習したテキスト・画像拡散モデルのパワーを利用して,対象のテキストに適合する新たな画像を生成する。
論文 参考訳(メタデータ) (2022-11-22T20:39:18Z) - DiffEdit: Diffusion-based semantic image editing with mask guidance [64.555930158319]
DiffEditは、セマンティック画像編集のタスクにテキスト条件付き拡散モデルを利用する方法である。
私たちの主なコントリビューションは、編集が必要な入力画像の領域をハイライトするマスクを自動的に生成できることです。
論文 参考訳(メタデータ) (2022-10-20T17:16:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。