Encoding and Controlling Global Semantics for Long-form Video Question Answering
- URL: http://arxiv.org/abs/2405.19723v1
- Date: Thu, 30 May 2024 06:10:10 GMT
- Title: Encoding and Controlling Global Semantics for Long-form Video Question Answering
- Authors: Thong Thanh Nguyen, Zhiyuan Hu, Xiaobao Wu, Cong-Duy T Nguyen, See-Kiong Ng, Anh Tuan Luu,
- Abstract summary: We introduce a state space layer (SSL) into multi-modal Transformer to efficiently integrate global semantics of the video.
Our SSL includes a gating unit to enable controllability over the flow of global semantics into visual representations.
To rigorously evaluate long-form videoQA capacity, we construct two new benchmarks Ego-QA and MAD-QA featuring videos of considerably long length.
- Score: 40.129800076300434
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Seeking answers effectively for long videos is essential to build video question answering (videoQA) systems. Previous methods adaptively select frames and regions from long videos to save computations. However, this fails to reason over the whole sequence of video, leading to sub-optimal performance. To address this problem, we introduce a state space layer (SSL) into multi-modal Transformer to efficiently integrate global semantics of the video, which mitigates the video information loss caused by frame and region selection modules. Our SSL includes a gating unit to enable controllability over the flow of global semantics into visual representations. To further enhance the controllability, we introduce a cross-modal compositional congruence (C^3) objective to encourage global semantics aligned with the question. To rigorously evaluate long-form videoQA capacity, we construct two new benchmarks Ego-QA and MAD-QA featuring videos of considerably long length, i.e. 17.5 minutes and 1.9 hours, respectively. Extensive experiments demonstrate the superiority of our framework on these new as well as existing datasets.
Related papers
- LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding [65.46303012350207]
LongVU is an adaptive compression mechanism that reduces the number of video tokens while preserving visual details of long videos.
We leverage DINOv2 features to remove redundant frames that exhibit high similarity.
We perform spatial token reduction across frames based on their temporal dependencies.
arXiv Detail & Related papers (2024-10-22T21:21:37Z) - Too Many Frames, Not All Useful: Efficient Strategies for Long-Form Video QA [40.54207548074378]
Long-form videos that span across wide temporal intervals are highly information redundant.
All information necessary to generate a correct response can often be contained within a small subset of frames.
arXiv Detail & Related papers (2024-06-13T17:59:16Z) - Koala: Key frame-conditioned long video-LLM [70.52369588364992]
We propose a lightweight and self-supervised long video-LLM (Koala) to adapt pretrained vLLMs for generalizing to longer videos.
Our approach outperforms state-of-the-art large models by 3 - 6% in absolute accuracy across all tasks.
Surprisingly, we also empirically show that our approach not only helps a pretrained vLLM to understand long videos but also improves its accuracy on short-term action recognition.
arXiv Detail & Related papers (2024-04-05T18:33:04Z) - LongVLM: Efficient Long Video Understanding via Large Language Models [55.813206751150716]
LongVLM is a simple yet powerful VideoLLM for long video understanding.
We encode video representations that incorporate both local and global information.
Our model produces more precise responses for long video understanding.
arXiv Detail & Related papers (2024-04-04T11:33:29Z) - LVCHAT: Facilitating Long Video Comprehension [25.395689904747965]
We propose Long Video Chat (LVChat) to enable multimodal large language models (LLMs) to read videos.
LV significantly outperforms existing methods by up to 27% in accuracy on long-video QA datasets and long-video captioning benchmarks.
arXiv Detail & Related papers (2024-02-19T11:59:14Z) - Spatio-temporal Prompting Network for Robust Video Feature Extraction [74.54597668310707]
Frametemporal is one of the main challenges in the field of video understanding.
Recent approaches exploit transformer-based integration modules to obtain quality-of-temporal information.
We present a neat and unified framework called N-Temporal Prompting Network (NNSTP)
It can efficiently extract video features by adjusting the input features in the network backbone.
arXiv Detail & Related papers (2024-02-04T17:52:04Z) - MIST: Multi-modal Iterative Spatial-Temporal Transformer for Long-form
Video Question Answering [73.61182342844639]
We introduce a new model named Multi-modal Iterative Spatial-temporal Transformer (MIST) to better adapt pre-trained models for long-form VideoQA.
MIST decomposes traditional dense spatial-temporal self-attention into cascaded segment and region selection modules.
Visual concepts at different granularities are then processed efficiently through an attention module.
arXiv Detail & Related papers (2022-12-19T15:05:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.