論文の概要: Research on the Spatial Data Intelligent Foundation Model
- arxiv url: http://arxiv.org/abs/2405.19730v5
- Date: Wed, 28 Aug 2024 13:05:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 11:00:36.764600
- Title: Research on the Spatial Data Intelligent Foundation Model
- Title(参考訳): 空間データ知能基礎モデルに関する研究
- Authors: Shaohua Wang, Xing Xie, Yong Li, Danhuai Guo, Zhi Cai, Yu Liu, Yang Yue, Xiao Pan, Feng Lu, Huayi Wu, Zhipeng Gui, Zhiming Ding, Bolong Zheng, Fuzheng Zhang, Jingyuan Wang, Zhengchao Chen, Hao Lu, Jiayi Li, Peng Yue, Wenhao Yu, Yao Yao, Leilei Sun, Yong Zhang, Longbiao Chen, Xiaoping Du, Xiang Li, Xueying Zhang, Kun Qin, Zhaoya Gong, Weihua Dong, Xiaofeng Meng,
- Abstract要約: 本報告では、これらのモデルの原理、手法、最先端の応用を探求する、空間データインテリジェントな大規模モデルに焦点を当てる。
これは、空間データインテリジェントな大規模モデルの定義、開発履歴、現状、およびトレンドに関する詳細な議論を提供する。
本報告では, 都市環境, 航空宇宙リモートセンシング, 地理, 交通, その他のシナリオにおける空間データ知能大規模モデルの重要技術とその応用を体系的に解明する。
- 参考スコア(独自算出の注目度): 70.47828328840912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This report focuses on spatial data intelligent large models, delving into the principles, methods, and cutting-edge applications of these models. It provides an in-depth discussion on the definition, development history, current status, and trends of spatial data intelligent large models, as well as the challenges they face. The report systematically elucidates the key technologies of spatial data intelligent large models and their applications in urban environments, aerospace remote sensing, geography, transportation, and other scenarios. Additionally, it summarizes the latest application cases of spatial data intelligent large models in themes such as urban development, multimodal systems, remote sensing, smart transportation, and resource environments. Finally, the report concludes with an overview and outlook on the development prospects of spatial data intelligent large models.
- Abstract(参考訳): 本報告では、これらのモデルの原理、手法、最先端の応用を探求する、空間データインテリジェントな大規模モデルに焦点を当てる。
これは、空間データインテリジェントな大規模モデルの定義、開発履歴、現状、トレンド、そしてそれらが直面する課題について、詳細な議論を提供する。
本報告では, 都市環境, 航空宇宙リモートセンシング, 地理, 交通, その他のシナリオにおける空間データ知能大規模モデルの重要技術とその応用を体系的に解明する。
さらに,都市開発,マルチモーダルシステム,リモートセンシング,スマートトランスポート,資源環境といったテーマにおける空間データインテリジェントな大規模モデルの適用事例をまとめた。
最後に、このレポートは、空間データインテリジェントな大規模モデルの開発展望の概要と展望をまとめて締めくくっている。
関連論文リスト
- Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
本調査は、リモートセンシング基礎モデル(RSFM)の新しい分野を体系的にレビューする。
モチベーションと背景の概要から始まり、続いて基本概念が導入された。
我々はこれらのモデルを公開データセットと比較し、既存の課題について議論し、今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2024-10-22T01:08:21Z) - Enabling High Data Throughput Reinforcement Learning on GPUs: A Domain Agnostic Framework for Data-Driven Scientific Research [90.91438597133211]
我々は、強化学習の適用において重要なシステムのボトルネックを克服するために設計されたフレームワークであるWarpSciを紹介する。
我々は、CPUとGPU間のデータ転送の必要性を排除し、数千のシミュレーションを同時実行可能にする。
論文 参考訳(メタデータ) (2024-08-01T21:38:09Z) - Deep Learning for Spatiotemporal Big Data: A Vision on Opportunities and
Challenges [4.497634148674422]
一時的ビッグデータは、これまで不可能だった問題を解決する新たな機会を育むことができる。
ビッグデータの特徴は、ディープラーニング技術に新たな課題をもたらす。
論文 参考訳(メタデータ) (2023-10-30T19:12:51Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
時系列データ、特に時系列データと時間時間データは、現実世界のアプリケーションで広く使われている。
大規模言語やその他の基礎モデルの最近の進歩は、時系列データマイニングや時間データマイニングでの使用の増加に拍車を掛けている。
論文 参考訳(メタデータ) (2023-10-16T09:06:00Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
この研究は、多様な都市空間時間データセットにアクセスし活用する際の課題に対処する。
都市空間・時空間のビッグデータ用に設計された統合ストレージフォーマットであるアトミックファイルを導入し,40種類の多様なデータセットでその有効性を検証する。
多様なモデルとデータセットを使用して広範な実験を行い、パフォーマンスリーダーボードを確立し、有望な研究方向性を特定する。
論文 参考訳(メタデータ) (2023-08-24T16:20:00Z) - LibCity: A Unified Library Towards Efficient and Comprehensive Urban
Spatial-Temporal Prediction [74.08181247675095]
既存の分野には、さまざまなフォーマットで使用が難しいオープンソースデータなど、制限がある。
我々は、研究者に信頼性のある実験ツールと便利な開発フレームワークを提供するオープンソースライブラリ、LibCityを提案する。
論文 参考訳(メタデータ) (2023-04-27T17:19:26Z) - Statistical Deep Learning for Spatial and Spatio-Temporal Data [0.0]
本稿では,空間的・時間的データをモデル化するための統計的・機械学習的な視点について概観する。
次に、最近、潜在プロセス、データ、パラメータ仕様のために開発された様々なハイブリッドモデルに焦点を当てます。
これらのハイブリッドモデルは、モデリングパラダイムの強みを活用するために、モデリングアイデアとディープニューラルネットワークモデルを統合する。
論文 参考訳(メタデータ) (2022-06-05T16:49:10Z) - From Data to Actions in Intelligent Transportation Systems: a
Prescription of Functional Requirements for Model Actionability [10.27718355111707]
この研究は、多種多様なソースから得られたデータが、その資産やシステム、プロセスの効率的な運用のために、データ駆動モデルを学び、適応するためにどのように使用できるかを説明することを目的としている。
ITSのデータモデリングパイプラインでは、データ融合、適応学習、モデル評価という3つの複合ステージに対して、特性、エンジニアリング要件、本質的な課題を定義します。
論文 参考訳(メタデータ) (2020-02-06T12:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。