Understanding and mitigating difficulties in posterior predictive evaluation
- URL: http://arxiv.org/abs/2405.19747v1
- Date: Thu, 30 May 2024 06:50:28 GMT
- Title: Understanding and mitigating difficulties in posterior predictive evaluation
- Authors: Abhinav Agrawal, Justin Domke,
- Abstract summary: We observe that the signal-to-noise ratio (SNR) of such estimators can be extremely low.
We propose replacing simple MC sampling with importance sampling using a proposal distribution optimized at test time on a variational proxy for the SNR.
- Score: 20.894503281724052
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Predictive posterior densities (PPDs) are of interest in approximate Bayesian inference. Typically, these are estimated by simple Monte Carlo (MC) averages using samples from the approximate posterior. We observe that the signal-to-noise ratio (SNR) of such estimators can be extremely low. An analysis for exact inference reveals SNR decays exponentially as there is an increase in (a) the mismatch between training and test data, (b) the dimensionality of the latent space, or (c) the size of the test data relative to the training data. Further analysis extends these results to approximate inference. To remedy the low SNR problem, we propose replacing simple MC sampling with importance sampling using a proposal distribution optimized at test time on a variational proxy for the SNR and demonstrate that this yields greatly improved estimates.
Related papers
- Enhancing Diffusion Posterior Sampling for Inverse Problems by Integrating Crafted Measurements [45.70011319850862]
Diffusion models have emerged as a powerful foundation model for visual generation.
Current posterior sampling based methods take the measurement into the posterior sampling to infer the distribution of the target data.
We show that high-frequency information can be prematurely introduced during the early stages, which could induce larger posterior estimate errors.
We propose a novel diffusion posterior sampling method DPS-CM, which incorporates a Crafted Measurement.
arXiv Detail & Related papers (2024-11-15T00:06:57Z) - Leveraging Nested MLMC for Sequential Neural Posterior Estimation with
Intractable Likelihoods [0.8287206589886881]
SNPE techniques are proposed for dealing with simulation-based models with intractable likelihoods.
In this paper, we propose a nested APT method to estimate the involved nested expectation.
Since the nested estimators for the loss function and its gradient are biased, we make use of unbiased multi-level Monte Carlo (MLMC) estimators.
arXiv Detail & Related papers (2024-01-30T06:29:41Z) - Collapsed Inference for Bayesian Deep Learning [36.1725075097107]
We introduce a novel collapsed inference scheme that performs Bayesian model averaging using collapsed samples.
A collapsed sample represents uncountably many models drawn from the approximate posterior.
Our proposed use of collapsed samples achieves a balance between scalability and accuracy.
arXiv Detail & Related papers (2023-06-16T08:34:42Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z) - Instance-Optimal Compressed Sensing via Posterior Sampling [101.43899352984774]
We show for Gaussian measurements and emphany prior distribution on the signal, that the posterior sampling estimator achieves near-optimal recovery guarantees.
We implement the posterior sampling estimator for deep generative priors using Langevin dynamics, and empirically find that it produces accurate estimates with more diversity than MAP.
arXiv Detail & Related papers (2021-06-21T22:51:56Z) - Rapid Risk Minimization with Bayesian Models Through Deep Learning
Approximation [9.93116974480156]
We introduce a novel combination of Bayesian Models (BMs) and Neural Networks (NNs) for making predictions with a minimum expected risk.
Our approach combines the data efficiency and interpretability of a BM with the speed of a NN.
We achieve risk minimized predictions significantly faster than standard methods with a negligible loss on the testing dataset.
arXiv Detail & Related papers (2021-03-29T15:08:25Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - On Signal-to-Noise Ratio Issues in Variational Inference for Deep
Gaussian Processes [55.62520135103578]
We show that the gradient estimates used in training Deep Gaussian Processes (DGPs) with importance-weighted variational inference are susceptible to signal-to-noise ratio (SNR) issues.
We show that our fix can lead to consistent improvements in the predictive performance of DGP models.
arXiv Detail & Related papers (2020-11-01T14:38:02Z) - Nonparametric Estimation of the Fisher Information and Its Applications [82.00720226775964]
This paper considers the problem of estimation of the Fisher information for location from a random sample of size $n$.
An estimator proposed by Bhattacharya is revisited and improved convergence rates are derived.
A new estimator, termed a clipped estimator, is proposed.
arXiv Detail & Related papers (2020-05-07T17:21:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.