Generating Query Recommendations via LLMs
- URL: http://arxiv.org/abs/2405.19749v2
- Date: Tue, 04 Jun 2024 07:45:06 GMT
- Title: Generating Query Recommendations via LLMs
- Authors: Andrea Bacciu, Enrico Palumbo, Andreas Damianou, Nicola Tonellotto, Fabrizio Silvestri,
- Abstract summary: We frame the query recommendation problem as a generative task, proposing a novel approach called Generative Query Recommendation (GQR)
GQR uses an LLM as its foundation and does not require to be trained or fine-tuned to tackle the query recommendation problem.
We propose a version that exploits query logs called Retriever-Augmented GQR (RA-GQR)
- Score: 14.268490610954037
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Query recommendation systems are ubiquitous in modern search engines, assisting users in producing effective queries to meet their information needs. However, these systems require a large amount of data to produce good recommendations, such as a large collection of documents to index and query logs. In particular, query logs and user data are not available in cold start scenarios. Query logs are expensive to collect and maintain and require complex and time-consuming cascading pipelines for creating, combining, and ranking recommendations. To address these issues, we frame the query recommendation problem as a generative task, proposing a novel approach called Generative Query Recommendation (GQR). GQR uses an LLM as its foundation and does not require to be trained or fine-tuned to tackle the query recommendation problem. We design a prompt that enables the LLM to understand the specific recommendation task, even using a single example. We then improved our system by proposing a version that exploits query logs called Retriever-Augmented GQR (RA-GQR). RA-GQr dynamically composes its prompt by retrieving similar queries from query logs. GQR approaches reuses a pre-existing neural architecture resulting in a simpler and more ready-to-market approach, even in a cold start scenario. Our proposed GQR obtains state-of-the-art performance in terms of NDCG@10 and clarity score against two commercial search engines and the previous state-of-the-art approach on the Robust04 and ClueWeb09B collections, improving on average the NDCG@10 performance up to ~4% on Robust04 and ClueWeb09B w.r.t the previous best competitor. RA-GQR further improve the NDCG@10 obtaining an increase of ~11%, ~6\% on Robust04 and ClueWeb09B w.r.t the best competitor. Furthermore, our system obtained ~59% of user preferences in a blind user study, proving that our method produces the most engaging queries.
Related papers
- Generative Product Recommendations for Implicit Superlative Queries [21.750990820244983]
In Recommender Systems, users often seek the best products through indirect, vague, or under-specified queries, such as "best shoes for trail running"
We investigate how Large Language Models can generate implicit attributes for ranking as well as reason over them to improve product recommendations for such queries.
arXiv Detail & Related papers (2025-04-26T00:05:47Z) - From Prompting to Alignment: A Generative Framework for Query Recommendation [36.541332088115105]
We propose a Generative Query Recommendation (GQR) framework that aligns query generation with user preference.
Specifically, we unify diverse query recommendation tasks by a universal prompt framework.
We also present a CTR-alignment framework, which involves training a query-wise CTR predictor as a process reward model.
arXiv Detail & Related papers (2025-04-14T13:21:29Z) - Rank-R1: Enhancing Reasoning in LLM-based Document Rerankers via Reinforcement Learning [76.50690734636477]
We introduce Rank-R1, a novel LLM-based reranker that performs reasoning over both the user query and candidate documents before performing the ranking task.
Our experiments on the TREC DL and BRIGHT datasets show that Rank-R1 is highly effective, especially for complex queries.
arXiv Detail & Related papers (2025-03-08T03:14:26Z) - Disentangling Questions from Query Generation for Task-Adaptive Retrieval [22.86406485412172]
We propose EGG, a query generator that better adapts to wide search intents expressed in the BeIR benchmark.
Our method outperforms baselines and existing models on four tasks with underexplored intents, while utilizing a query generator 47 times smaller than the previous state-of-the-art.
arXiv Detail & Related papers (2024-09-25T02:53:27Z) - BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval [54.54576644403115]
Many complex real-world queries require in-depth reasoning to identify relevant documents.
We introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents.
Our dataset consists of 1,384 real-world queries spanning diverse domains, such as economics, psychology, mathematics, and coding.
arXiv Detail & Related papers (2024-07-16T17:58:27Z) - CHIQ: Contextual History Enhancement for Improving Query Rewriting in Conversational Search [67.6104548484555]
We introduce CHIQ, a two-step method that leverages the capabilities of open-source large language models (LLMs) to resolve ambiguities in the conversation history before query rewriting.
We demonstrate on five well-established benchmarks that CHIQ leads to state-of-the-art results across most settings.
arXiv Detail & Related papers (2024-06-07T15:23:53Z) - MCS-SQL: Leveraging Multiple Prompts and Multiple-Choice Selection For Text-to-SQL Generation [10.726734105960924]
Large language models (LLMs) have enabled in-context learning (ICL)-based methods that significantly outperform fine-tuning approaches for text-to- tasks.
This study considers the sensitivity of LLMs to the prompts and introduces a novel approach that leverages multiple prompts to explore a broader search space for possible answers.
We establish a new SOTA performance on the BIRD in terms of both the accuracy and efficiency of the generated queries.
arXiv Detail & Related papers (2024-05-13T04:59:32Z) - Selecting Query-bag as Pseudo Relevance Feedback for Information-seeking Conversations [76.70349332096693]
Information-seeking dialogue systems are widely used in e-commerce systems.
We propose a Query-bag based Pseudo Relevance Feedback framework (QB-PRF)
It constructs a query-bag with related queries to serve as pseudo signals to guide information-seeking conversations.
arXiv Detail & Related papers (2024-03-22T08:10:32Z) - Ask Optimal Questions: Aligning Large Language Models with Retriever's
Preference in Conversational Search [25.16282868262589]
RetPO is designed to optimize a language model (LM) for reformulating search queries in line with the preferences of the target retrieval systems.
We construct a large-scale dataset called Retrievers' Feedback on over 410K query rewrites across 12K conversations.
The resulting model achieves state-of-the-art performance on two recent conversational search benchmarks.
arXiv Detail & Related papers (2024-02-19T04:41:31Z) - GAR-meets-RAG Paradigm for Zero-Shot Information Retrieval [16.369071865207808]
We propose a novel GAR-meets-RAG recurrence formulation that overcomes the challenges of existing paradigms.
A key design principle is that the rewrite-retrieval stages improve the recall of the system and a final re-ranking stage improves the precision.
Our method establishes a new state-of-the-art in the BEIR benchmark, outperforming previous best results in Recall@100 and nDCG@10 metrics on 6 out of 8 datasets.
arXiv Detail & Related papers (2023-10-31T03:52:08Z) - JoinGym: An Efficient Query Optimization Environment for Reinforcement
Learning [58.71541261221863]
Join order selection (JOS) is the problem of ordering join operations to minimize total query execution cost.
We present JoinGym, a query optimization environment for bushy reinforcement learning (RL)
Under the hood, JoinGym simulates a query plan's cost by looking up intermediate result cardinalities from a pre-computed dataset.
arXiv Detail & Related papers (2023-07-21T17:00:06Z) - Improving Sequential Query Recommendation with Immediate User Feedback [6.925738064847176]
We propose an algorithm for next query recommendation in interactive data exploration settings.
We conduct a large-scale experimental study using log files from a popular online literature discovery service.
arXiv Detail & Related papers (2022-05-12T18:19:24Z) - Graph Enhanced BERT for Query Understanding [55.90334539898102]
query understanding plays a key role in exploring users' search intents and facilitating users to locate their most desired information.
In recent years, pre-trained language models (PLMs) have advanced various natural language processing tasks.
We propose a novel graph-enhanced pre-training framework, GE-BERT, which can leverage both query content and the query graph.
arXiv Detail & Related papers (2022-04-03T16:50:30Z) - Session-Aware Query Auto-completion using Extreme Multi-label Ranking [61.753713147852125]
We take the novel approach of modeling session-aware query auto-completion as an e Multi-Xtreme Ranking (XMR) problem.
We adapt a popular XMR algorithm for this purpose by proposing several modifications to the key steps in the algorithm.
Our approach meets the stringent latency requirements for auto-complete systems while leveraging session information in making suggestions.
arXiv Detail & Related papers (2020-12-09T17:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.