Exploring Key Factors for Long-Term Vessel Incident Risk Prediction
- URL: http://arxiv.org/abs/2405.19804v1
- Date: Thu, 30 May 2024 08:12:51 GMT
- Title: Exploring Key Factors for Long-Term Vessel Incident Risk Prediction
- Authors: Tianyi Chen, Hua Wang, Yutong Cai, Maohan Liang, Qiang Meng,
- Abstract summary: This study aims to delve into the key factors for predicting the incident risk levels in the subsequent year given a specific datestamp.
The majority of candidate factors potentially contributing to the incident risk are collected from vessels' historical safety performance data spanning up to five years.
- Score: 31.76226678877918
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Factor analysis acts a pivotal role in enhancing maritime safety. Most previous studies conduct factor analysis within the framework of incident-related label prediction, where the developed models can be categorized into short-term and long-term prediction models. The long-term models offer a more strategic approach, enabling more proactive risk management, compared to the short-term ones. Nevertheless, few studies have devoted to rigorously identifying the key factors for the long-term prediction and undertaking comprehensive factor analysis. Hence, this study aims to delve into the key factors for predicting the incident risk levels in the subsequent year given a specific datestamp. The majority of candidate factors potentially contributing to the incident risk are collected from vessels' historical safety performance data spanning up to five years. An improved embedded feature selection, which integrates Random Forest classifier with a feature filtering process is proposed to identify key risk-contributing factors from the candidate pool. The results demonstrate superior performance of the proposed method in incident prediction and factor interpretability. Comprehensive analysis is conducted upon the key factors, which could help maritime stakeholders formulate management strategies for incident prevenion.
Related papers
- A new machine learning framework for occupational accidents forecasting with safety inspections integration [0.9562145896371785]
We propose a generic framework for short-term occupational accident forecasting that leverages safety inspections and models accident occurrences as binary time series.<n>The proposed methodology converts routine safety inspection data into clear weekly risk scores, detecting the periods when accidents are most likely.
arXiv Detail & Related papers (2025-06-30T09:28:11Z) - An Early Warning Model for Forced Displacement [0.0]
This paper presents a novel monitoring approach for refugee and asylum seeker flows.<n>Using gradient boosting classification, we combine conflict forecasts with a comprehensive set of economic, political, and demographic variables.<n>Our analysis shows high accuracy in predicting significant displacement flows and good accuracy in forecasting sudden increases in displacement.
arXiv Detail & Related papers (2025-04-29T08:00:12Z) - Survival Models: Proper Scoring Rule and Stochastic Optimization with Competing Risks [6.9648613217501705]
SurvivalBoost outperforms 12 state-of-the-art models on 4 real-life datasets.
It provides great calibration, the ability to predict across any time horizon, and computation times faster than existing methods.
arXiv Detail & Related papers (2024-10-22T07:33:34Z) - Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework [77.45983464131977]
We focus on how likely it is that a RAG model's prediction is incorrect, resulting in uncontrollable risks in real-world applications.
Our research identifies two critical latent factors affecting RAG's confidence in its predictions.
We develop a counterfactual prompting framework that induces the models to alter these factors and analyzes the effect on their answers.
arXiv Detail & Related papers (2024-09-24T14:52:14Z) - Risk-Aware Vehicle Trajectory Prediction Under Safety-Critical Scenarios [25.16311876790003]
This paper proposes a risk-aware trajectory prediction framework tailored to safety-critical scenarios.
We introduce a safety-critical trajectory prediction dataset and tailored evaluation metrics.
Results demonstrate the superior performance of our model, with a significant improvement in most metrics.
arXiv Detail & Related papers (2024-07-18T13:00:01Z) - Challenges and Considerations in the Evaluation of Bayesian Causal Discovery [49.0053848090947]
Representing uncertainty in causal discovery is a crucial component for experimental design, and more broadly, for safe and reliable causal decision making.
Unlike non-Bayesian causal discovery, which relies on a single estimated causal graph and model parameters for assessment, causal discovery presents challenges due to the nature of its quantity.
No consensus on the most suitable metric for evaluation.
arXiv Detail & Related papers (2024-06-05T12:45:23Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - Off-Policy Risk Assessment in Markov Decision Processes [15.225153671736201]
We develop the first doubly robust (DR) estimator for the CDF of returns in Markov decision processes (MDPs)
This estimator enjoys significantly less variance and, when the model is well specified, achieves the Cramer-Rao variance lower bound.
We derive the first minimax lower bounds for off-policy CDF and risk estimation, which match our error bounds up to a constant factor.
arXiv Detail & Related papers (2022-09-21T15:40:59Z) - Incident duration prediction using a bi-level machine learning framework
with outlier removal and intra-extra joint optimisation [6.291975267775799]
This paper presents a novel bi-level machine learning framework enhanced with outlier removal and intra-extra joint optimisation.
We use incident data logs to develop a binary classification prediction approach, which allows us to classify traffic incidents as short-term or long-term.
We find the optimal threshold between short-term versus long-term traffic incident duration, targeting both class balance and prediction performance.
arXiv Detail & Related papers (2022-05-10T22:40:05Z) - Two steps to risk sensitivity [4.974890682815778]
conditional value-at-risk (CVaR) is a risk measure for modeling human and animal planning.
We adopt a conventional distributional approach to CVaR in a sequential setting and reanalyze the choices of human decision-makers.
We then consider a further critical property of risk sensitivity, namely time consistency, showing alternatives to this form of CVaR.
arXiv Detail & Related papers (2021-11-12T16:27:47Z) - The Impact of Algorithmic Risk Assessments on Human Predictions and its
Analysis via Crowdsourcing Studies [79.66833203975729]
We conduct a vignette study in which laypersons are tasked with predicting future re-arrests.
Our key findings are as follows: Participants often predict that an offender will be rearrested even when they deem the likelihood of re-arrest to be well below 50%.
Judicial decisions, unlike participants' predictions, depend in part on factors that are to the likelihood of re-arrest.
arXiv Detail & Related papers (2021-09-03T11:09:10Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.