Survival Models: Proper Scoring Rule and Stochastic Optimization with Competing Risks
- URL: http://arxiv.org/abs/2410.16765v1
- Date: Tue, 22 Oct 2024 07:33:34 GMT
- Title: Survival Models: Proper Scoring Rule and Stochastic Optimization with Competing Risks
- Authors: Julie Alberge, Vincent Maladière, Olivier Grisel, Judith Abécassis, Gaël Varoquaux,
- Abstract summary: SurvivalBoost outperforms 12 state-of-the-art models on 4 real-life datasets.
It provides great calibration, the ability to predict across any time horizon, and computation times faster than existing methods.
- Score: 6.9648613217501705
- License:
- Abstract: When dealing with right-censored data, where some outcomes are missing due to a limited observation period, survival analysis -- known as time-to-event analysis -- focuses on predicting the time until an event of interest occurs. Multiple classes of outcomes lead to a classification variant: predicting the most likely event, a less explored area known as competing risks. Classic competing risks models couple architecture and loss, limiting scalability.To address these issues, we design a strictly proper censoring-adjusted separable scoring rule, allowing optimization on a subset of the data as each observation is evaluated independently. The loss estimates outcome probabilities and enables stochastic optimization for competing risks, which we use for efficient gradient boosting trees. SurvivalBoost not only outperforms 12 state-of-the-art models across several metrics on 4 real-life datasets, both in competing risks and survival settings, but also provides great calibration, the ability to predict across any time horizon, and computation times faster than existing methods.
Related papers
- Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
We provide training examples for the in- and out-of-sample risks of ridge regression when the data points have arbitrary correlations.
We further extend our analysis to the case where the test point has non-trivial correlations with the training set, setting often encountered in time series forecasting.
We validate our theory across a variety of high dimensional data.
arXiv Detail & Related papers (2024-08-08T17:27:29Z) - Teaching Models To Survive: Proper Scoring Rule and Stochastic Optimization with Competing Risks [6.9648613217501705]
When data are right-censored, survival analysis can compute the "time to event"
We introduce a strictly proper censoring-adjusted separable scoring rule that can be optimized on a subpart of the data.
Compared to 11 state-of-the-art models, this model, MultiIncidence, performs best in estimating the probability of outcomes in survival and competing risks.
arXiv Detail & Related papers (2024-06-20T08:00:42Z) - TripleSurv: Triplet Time-adaptive Coordinate Loss for Survival Analysis [15.496918127515665]
We propose a time-adaptive coordinate loss function, TripleSurv, to handle the complexities of learning process and exploit valuable survival time values.
Our TripleSurv is evaluated on three real-world survival datasets and a public synthetic dataset.
arXiv Detail & Related papers (2024-01-05T08:37:57Z) - CenTime: Event-Conditional Modelling of Censoring in Survival Analysis [49.44664144472712]
We introduce CenTime, a novel approach to survival analysis that directly estimates the time to event.
Our method features an innovative event-conditional censoring mechanism that performs robustly even when uncensored data is scarce.
Our results indicate that CenTime offers state-of-the-art performance in predicting time-to-death while maintaining comparable ranking performance.
arXiv Detail & Related papers (2023-09-07T17:07:33Z) - Rethinking Missing Data: Aleatoric Uncertainty-Aware Recommendation [59.500347564280204]
We propose a new Aleatoric Uncertainty-aware Recommendation (AUR) framework.
AUR consists of a new uncertainty estimator along with a normal recommender model.
As the chance of mislabeling reflects the potential of a pair, AUR makes recommendations according to the uncertainty.
arXiv Detail & Related papers (2022-09-22T04:32:51Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
Empirical risk minimization (ERM) is the workhorse of machine learning, but its model-agnostic guarantees can fail when we use adaptively collected data.
We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class.
For policy learning, we provide rate-optimal regret guarantees that close an open gap in the existing literature whenever exploration decays to zero.
arXiv Detail & Related papers (2021-06-03T09:50:13Z) - DeepHazard: neural network for time-varying risks [0.6091702876917281]
We propose a new flexible method for survival prediction: DeepHazard, a neural network for time-varying risks.
Our approach is tailored for a wide range of continuous hazards forms, with the only restriction of being additive in time.
Numerical examples illustrate that our approach outperforms existing state-of-the-art methodology in terms of predictive capability evaluated through the C-index metric.
arXiv Detail & Related papers (2020-07-26T21:01:49Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Deep Survival Machines: Fully Parametric Survival Regression and
Representation Learning for Censored Data with Competing Risks [14.928328404160299]
We describe a new approach to estimating relative risks in time-to-event prediction problems with censored data.
Our approach does not require making strong assumptions of constant proportional hazard of the underlying survival distribution.
This is the first work involving fully parametric estimation of survival times with competing risks in the presence of censoring.
arXiv Detail & Related papers (2020-03-02T20:21:59Z) - Survival Cluster Analysis [93.50540270973927]
There is an unmet need in survival analysis for identifying subpopulations with distinct risk profiles.
An approach that addresses this need is likely to improve characterization of individual outcomes.
arXiv Detail & Related papers (2020-02-29T22:41:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.