A new machine learning framework for occupational accidents forecasting with safety inspections integration
- URL: http://arxiv.org/abs/2507.00089v1
- Date: Mon, 30 Jun 2025 09:28:11 GMT
- Title: A new machine learning framework for occupational accidents forecasting with safety inspections integration
- Authors: Aho Yapi, Pierre Latouche, Arnaud Guillin, Yan Bailly,
- Abstract summary: We propose a generic framework for short-term occupational accident forecasting that leverages safety inspections and models accident occurrences as binary time series.<n>The proposed methodology converts routine safety inspection data into clear weekly risk scores, detecting the periods when accidents are most likely.
- Score: 0.9562145896371785
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose a generic framework for short-term occupational accident forecasting that leverages safety inspections and models accident occurrences as binary time series. The approach generates daily predictions, which are then aggregated into weekly safety assessments to better inform decision making. To ensure the reliability and operational applicability of the forecasts, we apply a sliding-window cross-validation procedure specifically designed for time series data, combined with an evaluation based on aggregated period-level metrics. Several machine learning algorithms, including logistic regression, tree-based models, and neural networks, are trained and systematically compared within this framework. Unlike the other approaches, the long short-term memory (LSTM) network outperforms the other approaches and detects the upcoming high-risk periods with a balanced accuracy of 0.86, confirming the robustness of our methodology and demonstrating that a binary time series model can anticipate these critical periods based on safety inspections. The proposed methodology converts routine safety inspection data into clear weekly risk scores, detecting the periods when accidents are most likely. Decision-makers can integrate these scores into their planning tools to classify inspection priorities, schedule targeted interventions, and funnel resources to the sites or shifts classified as highest risk, stepping in before incidents occur and getting the greatest return on safety investments.
Related papers
- On Continuous Monitoring of Risk Violations under Unknown Shift [46.65571623109494]
We propose a general framework for the real-time monitoring of risk violations in evolving data streams.<n>Our method operates under minimal assumptions on the nature of encountered shifts.<n>We illustrate the effectiveness of our approach by monitoring risks in outlier detection and set prediction under a variety of shifts.
arXiv Detail & Related papers (2025-06-19T15:52:24Z) - Advancing Embodied Agent Security: From Safety Benchmarks to Input Moderation [52.83870601473094]
Embodied agents exhibit immense potential across a multitude of domains.<n>Existing research predominantly concentrates on the security of general large language models.<n>This paper introduces a novel input moderation framework, meticulously designed to safeguard embodied agents.
arXiv Detail & Related papers (2025-04-22T08:34:35Z) - Centaur: Robust End-to-End Autonomous Driving with Test-Time Training [84.78837437133234]
We propose Centaur, which updates a planner's behavior via test-time training without relying on hand-engineered rules or cost functions.<n>We develop a novel uncertainty measure, called Cluster Entropy, which is simple, interpretable, and compatible with state-of-the-art planning algorithms.
arXiv Detail & Related papers (2025-03-14T17:59:41Z) - Predicting Bad Goods Risk Scores with ARIMA Time Series: A Novel Risk Assessment Approach [0.0]
This research presents a novel framework that integrates Time Series ARIMA models with a proprietary formula designed to calculate bad goods after time series forecasting.<n> Experimental results, validated on a dataset spanning 2022-2024 for Organic Beer-G 1 Liter, demonstrate that the proposed method outperforms traditional statistical models.
arXiv Detail & Related papers (2025-02-23T09:52:11Z) - Safeguarded Progress in Reinforcement Learning: Safe Bayesian
Exploration for Control Policy Synthesis [63.532413807686524]
This paper addresses the problem of maintaining safety during training in Reinforcement Learning (RL)
We propose a new architecture that handles the trade-off between efficient progress and safety during exploration.
arXiv Detail & Related papers (2023-12-18T16:09:43Z) - Learning-Based Approaches to Predictive Monitoring with Conformal
Statistical Guarantees [2.1684857243537334]
This tutorial focuses on efficient methods to predictive monitoring (PM)
PM is the problem of detecting future violations of a given requirement from the current state of a system.
We present a general and comprehensive framework summarizing our approach to the predictive monitoring of CPSs.
arXiv Detail & Related papers (2023-12-04T15:16:42Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Incident duration prediction using a bi-level machine learning framework
with outlier removal and intra-extra joint optimisation [6.291975267775799]
This paper presents a novel bi-level machine learning framework enhanced with outlier removal and intra-extra joint optimisation.
We use incident data logs to develop a binary classification prediction approach, which allows us to classify traffic incidents as short-term or long-term.
We find the optimal threshold between short-term versus long-term traffic incident duration, targeting both class balance and prediction performance.
arXiv Detail & Related papers (2022-05-10T22:40:05Z) - Towards Safe Policy Improvement for Non-Stationary MDPs [48.9966576179679]
Many real-world problems of interest exhibit non-stationarity, and when stakes are high, the cost associated with a false stationarity assumption may be unacceptable.
We take the first steps towards ensuring safety, with high confidence, for smoothly-varying non-stationary decision problems.
Our proposed method extends a type of safe algorithm, called a Seldonian algorithm, through a synthesis of model-free reinforcement learning with time-series analysis.
arXiv Detail & Related papers (2020-10-23T20:13:51Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
We present a semi-formal verification approach for decision-making tasks based on interval analysis.
Our method obtains comparable results over standard benchmarks with respect to formal verifiers.
Our approach allows to efficiently evaluate safety properties for decision-making models in practical applications.
arXiv Detail & Related papers (2020-10-19T11:18:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.